Skip to main content
Log in

A tale of two centromeres—diversity of structure but conservation of function in plants and animals

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The structural and functional aspects of two specific centromeres, one drawn from the animal kingdom (Drosophila) and the other from the plant kingdom (maize), are compared. Both cases illustrate an epigenetic component to centromere specification. The observations of neocentromeres in Drosophila and inactive centromeres in maize constitute one line of evidence for this hypothesis. Another common feature is the divisibility of centromere function with reduced stability as the size decreases. The systems differ in that Drosophila has no common sequence repeat at all centromeres, whereas maize has a 150-bp unit present in tandem arrays together with a centromere-specific transposon, centromere retrotransposon maize, present at all primary constrictions. Aspects of centromere structure known only from one or the other system might be common to both, namely, the presence of centromere RNAs in the kinetochore as found in maize and the organization of the centromeric histone 3 in tetrameric nucleosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alfenito MR, Birchler JA (1993) Molecular characterization of a maize B-chromosome centric sequence. Genetics 135:589–597

    PubMed  CAS  Google Scholar 

  • Ananiev E, Phillips RL, Rines H (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A 95:13073–13078

    Article  PubMed  CAS  Google Scholar 

  • Ananiev E, Wu C, Chamberlin MA, Svitashev S, Schwartz C, Gordom-Kamm W, Tingey S (2008) Artificial chromosome formation in maize (Zea mays L.). Chromosoma doi:10.1007/s00412-008-0191-3

  • Brock RD, Pryor AJ (1996) An unstable minichromosome generates variegated oil yellow maize seedlings. Chromosoma 104:575–584

    Article  PubMed  CAS  Google Scholar 

  • Carlson WR (1970) Nondisjunction and isochromosome formation in the B chromosome of maize. Chromosoma 30:356–365

    Article  Google Scholar 

  • Carlson SR, Rudgers GW, Zieler H, Mach JM, Luo S, Grunden E, Krol C, Copenhaver GP, Preuss D (2007) Meiotic transmission of an In Vitro-assembled autonomous maize minichromosome. PLoS Genet 3:e179

    Article  Google Scholar 

  • Dalal Y, Furuyama T, Vermaak D, Henikoff S (2007a) Structure, dynamics, and evolution of centromeric nucleosomes. Proc Natl Acad Sci U S A 104:15974–15981

    Article  PubMed  CAS  Google Scholar 

  • Dalal Y, Wang H, Lindsay S, Henikoff S (2007b) Tetrameric structure of centromeric nucleosomes in interphase Drosophia cells. PLoS Biol 5:e218

    Article  PubMed  Google Scholar 

  • Furuyama T, Dalal Y, Henikoff S (2006) Chaperone-mediated assembly of centromeric chromatin in vitro. Proc Natl Acad Sci U S A 103:6172–6177

    Article  PubMed  CAS  Google Scholar 

  • Han F, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci U S A 103:3238–3243

    Article  PubMed  CAS  Google Scholar 

  • Han F, Gao Z, Yu W, Birchler JA (2007) Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion. Plant Cell 19:3853–3863

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10:303–315

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Lamb JC, Vega JM, Dawe RK, Birchler JA, Jiang J (2005) Molecular and functional dissection of the maize B chromosome centromere. Plant Cell 17:1412–1423

    Article  PubMed  CAS  Google Scholar 

  • Kaszas E, Birchler J (1996) Misdivision analysis of centromere structure in maize. EMBO J 15:5246–5255

    PubMed  CAS  Google Scholar 

  • Kaszas E, Birchler J (1998) Meiotic transmission rates correlate with physical features of rearranged centromeres in maize. Genetics 150:1683–1692

    PubMed  CAS  Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting in maize using repetitive DNA sequences as probes for somatic chromosome identification. Proc Natl Acad Sci U S A 101:13554–13559

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Zheng Y-Z, Auger DL, Phelps-Durr T, Bauer MJ, Lamb JC, Birchler JA (2005) Minichromosomes derived from the B chromosome of maize. Cytogenet Genome Res 109:156–165

    Article  PubMed  CAS  Google Scholar 

  • Lamb JC, Kato A, Birchler JA (2005) Centromere associated sequences are present throughout the maize B chromosome. Chromosoma 113:337–349

    Article  PubMed  CAS  Google Scholar 

  • Lamb JC, Meyer JM, Birchler JA (2007) A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region. Chromosoma 116:237–247

    Article  PubMed  CAS  Google Scholar 

  • Lin B-Y (1978) Regional control of nondisjunction of the B chromosome in maize. Genetics 90:613–627

    PubMed  Google Scholar 

  • Ma J, Wing RA, Bennetzen JL, Jackson SA (2007) Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23:134–139

    Article  PubMed  CAS  Google Scholar 

  • Maggert KA, Karpen GH (2001) The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 158:1615–1628

    PubMed  CAS  Google Scholar 

  • Maguire MP (1987) Meiotic behavior of a tiny fragment chromosome that carries a transposed centromere. Genome 29:744–747

    PubMed  CAS  Google Scholar 

  • May BP, Lippman ZB, Fang Y, Spector DL, Martienssen RA (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet 1:e79

    Article  PubMed  Google Scholar 

  • McClintock B (1938) The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23:315–376

    PubMed  CAS  Google Scholar 

  • Murphy TD, Karpen GH (1995) Localization of centromere function in a Drosophila minichromosome. Cell 82:599–609

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang J (2003) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770

    PubMed  CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  PubMed  CAS  Google Scholar 

  • Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A 102:9842–9847

    Article  PubMed  CAS  Google Scholar 

  • Phan BH, Jin W, Topp CN, Zhong CX, Jiang J, Dawe RK, Parrott WA (2006) Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA. Transgenic Res 3:341–351

    Google Scholar 

  • Phelps-Durr TL, Birchler JA (2004) An asymptotic determination of minimum centromere size for the maize B chromosome. Cytogenet Genome Res 106:309–313

    Article  PubMed  CAS  Google Scholar 

  • Platero JS, Ahmad K, Henikoff S (1999) A distal heterochromatic block displays centromeric activity when detached from a natural centromere. Mol Cell 4:995–1004

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MM (1940) Studies of a telocentric chromosome in maize with reference to the stability of its centromere. Genetics 25:483–521

    PubMed  CAS  Google Scholar 

  • Roman HL (1947) Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize. Genetics 32:391–409

    PubMed  CAS  Google Scholar 

  • Roman HL (1948) Directed fertilization in maize. Proc Natl Acad Sci U S A 34:36–42

    Article  Google Scholar 

  • Sharma A, Presting GG (2008) Centromeric retrotransposon lineages predate the maize/rice divergence and differ in abundance and activity. Mol Genet Genomics 279:133–147

    Article  PubMed  CAS  Google Scholar 

  • Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest in mitosis. Genes Dev 9:573–586

    Article  PubMed  CAS  Google Scholar 

  • Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Wahlstrom J, Karpen GH (1997) Molecular structure of a functional Drosophila centromere. Cell 91:1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Le HD, Wahlstrom JM, Karpen GH (2003) Sequence analysis of a functional Drosophila centromere. Genome Res 13:182–194

    Article  PubMed  CAS  Google Scholar 

  • Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci U S A 101:15986–15991

    Article  PubMed  CAS  Google Scholar 

  • Van Hooser AA, Ouspenski II, Gregson HC, Starr DA, Yen TJ, Goldberg ML, Yokomori K, Earnshaw WC, Sullivan KF, Brinkley BR (2001) Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 114:3529–3542

    PubMed  Google Scholar 

  • Ward E (1973) Nondisjunction: localization of the controlling site in the maize B chromosome. Genetics 73:387–391

    PubMed  Google Scholar 

  • Williams BC, Murphy TD, Goldberg ML, Karpen GH (1998) Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet 18:3–4

    Article  Google Scholar 

  • Wu J, Yamagata H, Hayashi-Tsugane M, Hijishita S, Fujisawa M, Shibata M, Ito Y, Nakamura M, Sakaguchi M, Yoshihara R, Kobayashi H, Ito K, Karasawa W, Yamamoto M, Saji S, Katagiri S, Kanamori H, Namiki N, Katayose Y, Matsumoto T, Sasaki T (2004) Composition and structure of the centromeric region of rice chromosome 8. Plant Cell 16:967–976

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Jin W, Nagaki K, Tian S, Ouyang S, Buell CR, Talbert PB, Henikoff S, Jiang J (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17:3227–3238

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci U S A 103:17331–17336

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Han F, Gao Z, Vega JM, Birchler JA (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci U S A 104:8924–8929

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y-Z, Roseman RR, Carlson WR (1999) Time course study of the chromosome-type breakage–fusion–bridge cycle in maize. Genetics 153:1435–1444

    PubMed  CAS  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research on the topics covered is supported by grants from that National Science Foundation DBI 0421671, DBI 0423898 and DBI 0701297.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birchler, J.A., Gao, Z. & Han, F. A tale of two centromeres—diversity of structure but conservation of function in plants and animals. Funct Integr Genomics 9, 7–13 (2009). https://doi.org/10.1007/s10142-008-0104-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-008-0104-9

Keywords

Navigation