Skip to main content
Log in

A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

A maize line, knobless Tama flint (KTF), was found to contain a version of chromosome 8 with two spatially distinct regions of centromeric elements, one at the original genetic position and the other at a novel location on the long arm. The new site of centromeric elements functions as the kinetochore-forming region resulting in a change of arm length ratio. Examination of fluorescence in situ hybridization markers on chromosome 8 revealed an inversion between the two centromere sites relative to standard maize lines, indicating that this chromosome 8 resulted from a hemicentric inversion with one breakpoint approximately 20 centi-McClintocks (cMc) on the long arm (20% of the total arm length from the centromere) and the other in the original cluster of centromere repeats. This inversion moved the kinetochore-forming region but left the remainder of the centromere repeats. In a hybrid between a standard line (Mo17) and KTF, both chromosome 8 homologues were completely synapsed at pachytene despite the inversion. Although the homologous centromeres were not paired, they were always correctly oriented at anaphase and migrated to opposite poles. Additionally, recombination on 8L was severely repressed in the hybrid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adawy SS, Stupar RM, Jiang J (2004) Fluorescence in situ hybridization analysis reveals multiple loci of knob-associated DNA elements in one-knob and knobless maize lines. J Histochem Cytochem 52:1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Amor DJ, Bentley K, Ryan J, Perry J, Wong L, Slater H, Choo KH (2004) Human centromere repositioning “in progress”. Proc Natl Acad Sci USA 101:6542–6547

    Article  PubMed  CAS  Google Scholar 

  • Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078

    Article  PubMed  CAS  Google Scholar 

  • Anderson LK, Doyle GG, Brigham B, Carter J, Hooker KD, Lai A, Rice M, Stack SM (2003) High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics 165:849–865

    PubMed  CAS  Google Scholar 

  • Anderson LK, Lai A, Stack SM, Rizzon C, Gaut BS (2006) Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes. Genome Res 16:115–122

    Article  PubMed  CAS  Google Scholar 

  • Ashley T, Moses MJ, Solari AJ (1981) Fine structure and behaviour of a pericentric inversion in the sand rat, Psammomys obesus. J Cell Sci 50:105–119

    PubMed  CAS  Google Scholar 

  • Brown GM, Leversha M, Hulten M, Ferguson-Smith MA, Affara NA, Furlong RA (1998) Genetic analysis of meiotic recombination in humans by use of sperm typing: reduced recombination within a heterozygous paracentric inversion of chromosome 9q32–q34.3. Am J Hum Genet 62:1484–1492

    Article  PubMed  CAS  Google Scholar 

  • Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360

    Article  PubMed  CAS  Google Scholar 

  • Choo KH (1998) Why is the centromere so cold? Genome Res 8:81–82

    PubMed  CAS  Google Scholar 

  • Dobzhansky T, Epling C (1948) The suppression of crossing over in inversion heterozygotes of Drosophila pseudoobscura. Proc Natl Acad Sci USA 34:137–141

    Article  PubMed  CAS  Google Scholar 

  • Eder V, Ventura M, Ianigro M, Teti M, Rocchi M, Archidiacono N (2003) Chromosome 6 phylogeny in primates and centromere repositioning. Mol Biol Evol 20:1506–1512

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578

    PubMed  CAS  Google Scholar 

  • Haaf T, Warburton PE, Willard HF (1992) Integration of human alpha-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell 70:681–696

    Article  PubMed  CAS  Google Scholar 

  • Han F, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103:3238–3243

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Holland N, Holland D, Helentjaris T, Dhugga KS, Xoconostle-Cazares B, Delmer DP (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol 123:1313–1324

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101:13554–13559

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Albert PS, Vega JM, Birchler JA (2006) Sensitive FISH signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81:71–78

    Article  PubMed  Google Scholar 

  • Lamb JC, Birchler JA (2003) The role of DNA sequence in centromere formation. Genome Biol 4:214

    Article  PubMed  Google Scholar 

  • Lamb JC, Birchler JA (2006) Retroelement genome painting: cytological visualization of retroelement expansions in the genera Zea and Tripsacum. Genetics 173:1007–1021

    Article  PubMed  CAS  Google Scholar 

  • Lamb JC, Theuri J, Birchler JA (2004) What’s in a centromere? Genome Biol 5:239

    Article  PubMed  Google Scholar 

  • Lamb JC, Kato A, Birchler JA (2005) Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Chromosoma 113:337–349

    Article  PubMed  CAS  Google Scholar 

  • Lamb JC, Kato A, Yu W, Han F, Albert PS, Birchler JA (2006a) Cytogenetics and chromosome analytical techniques. In: Floriculture, ornamental and plant biotechnology. Global Science Books, UK, pp 244–248

    Google Scholar 

  • Lamb JC, Meyer JM, Corcoran B, Kato A, Han F, Birchler JA (2007a) Distinct chromosomal distributions of highly repetitive sequences in maize. Chromosome Res (in press)

  • Lamb JC, Danilova T, Bauer MJ, Meyer JM, Holland JJ, Jensen MD, Birchler JA (2007b) Single loci detection and karyotyping using small target FISH on maize somatic chromosomes. Genetics (in press)

  • Lawrence CJ, Seigfried TE, Bass HW, Anderson LK (2005) Predicting chromosomal locations of genetically mapped loci in maize using the Morgan2McClintock translator. Genetics 172:2007–2009

    Article  PubMed  Google Scholar 

  • Longley AE (1939) Knob positions on corn chromosomes. J Agric Res 59:475–490

    Google Scholar 

  • Luchessi JC (1976) Interchromosomal effects. In: Ashburner M, Novitski E (eds) The genetics and biology of Drosophila. Academic, London, pp 315–329

    Google Scholar 

  • Maggert KA, Karpen GH (2001) The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 158:1615–1628

    PubMed  CAS  Google Scholar 

  • Maguire MP (1966) The relationship of crossing over to chromosome synapsis in a short paracentric inversion. Genetics 53:1071–1077

    PubMed  CAS  Google Scholar 

  • McClintock B (1933) The association of non-homologous parts of chromosomes in the mid-prophase of meiosis in Zea mays. Z Zellforsch Mikrosk Anat 19:191–237

    Article  Google Scholar 

  • Moniz de Sa M, Drouin G (1996) Phylogeny and substitution rates of angiosperm actin genes. Mol Biol Evol 13:1198–1212

    PubMed  CAS  Google Scholar 

  • Murphy TD, Karpen GH (1998) Centromeres take flight: alpha satellite and the quest for the human centromere. Cell 93:317–320

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang J (2003) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770

    PubMed  CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Okamoto Y, Ohzeki J, Masumoto H (2003) Epigenetic assembly of centromeric chromatin at ectopic alpha-satellite sites on human chromosomes. J Cell Sci 116:4021–4034

    Article  PubMed  CAS  Google Scholar 

  • Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102:9842–9847

    Article  PubMed  CAS  Google Scholar 

  • Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci USA 78:4490–4494

    Article  PubMed  CAS  Google Scholar 

  • Reeves A, Tear J (2000) MicroMeasure for Windows, version 3.3. (http://www.colostate.edu/Depts/Biology/MicroMeasure)

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  PubMed  CAS  Google Scholar 

  • Shibata F, Murata M (2004) Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana. J Cell Sci 117:2963–2970

    Article  PubMed  CAS  Google Scholar 

  • Spence JM, Critcher R, Ebersole TA, Valdivia MM, Earnshaw WC, Fukagawa T, Farr CJ (2002) Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X alpha-satellite array. EMBO J 21:5269–5280

    Article  PubMed  CAS  Google Scholar 

  • Wang CJ, Harper L, Cande WZ (2006) High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18:529–544

    Article  PubMed  CAS  Google Scholar 

  • Warburton PE, Cooke HJ (1997) Hamster chromosomes containing amplified human alpha-satellite DNA show delayed sister chromatid separation in the absence of de novo kinetochore formation. Chromosoma 106:149–159

    Article  PubMed  CAS  Google Scholar 

  • Williams BC, Murphy TD, Goldberg ML, Karpen GH (1998) Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet 18:30–37

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2007) Cytological visualization of transposable elements and their transposition pattern in somatic cells of maize. Genetics (in press)

  • Zetka MC, Rose AM (1992) The meiotic behavior of an inversion in Caenorhabditis elegans. Genetics 131:321–332

    PubMed  CAS  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Marty Sachs (Maize Genetics COOP Stock Center) and Mark Millard (North Central Regional Plant Introduction Station) for their help in tracking the pedigree of the KTF line. This work was supported by grants from the National Science Foundation Plant Genome Initiative (DBI0421671 and DBI0423898).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler.

Additional information

Communicated by I. Schubert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamb, J.C., Meyer, J.M. & Birchler, J.A. A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region. Chromosoma 116, 237–247 (2007). https://doi.org/10.1007/s00412-007-0096-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-007-0096-6

Keywords

Navigation