Skip to main content

Advertisement

Log in

RNA-Seq Transcriptome Analysis of the Liver and Brain of the Black Carp (Mylopharyngodon piceus) During Fasting

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract 

The black carp (Mylopharyngodon piceus) is an important carnivorous freshwater-cultured species. To understand the molecular basis underlying the response of black carp to fasting, we used RNA-Seq to analyze the liver and brain transcriptome of fasting fish. Annotation to the NCBI database identified 66,609 unigenes, of which 22,841 were classified into the Gene Ontology database and 15,925 were identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Comparative analysis of the expression profile between fasting and normal feeding fish revealed 13,737 differentially expressed genes (P < 0.05), of which 12,480 were found in liver tissue and 1257 were found in brain tissue. The KEGG pathway analysis showed significant differences in expression of genes involved in metabolic and immune pathways, such as the insulin signaling pathway, PI3K-Akt signaling pathway, cAMP signaling pathway, FoxO signaling pathway, AMPK signaling pathway, endocytosis, and apoptosis. Quantitative real-time PCR analysis confirmed that expression of the genes encoding the factors involved in those pathways differed between fasting and feeding fish. These results provide valuable information about the molecular response mechanism of black carp under fasting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahuja M, Jha A, Maléth J et al (2014) cAMP and Ca2+ signaling in secretory epithelia: crosstalk and synergism. Cell Calcium 55:385–393

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  • Cansino C, José M, Calero L et al (1999) Combined effect of lipid level and fish meal quality on liver histology of gilthead seabream (Sparus aurata). Aquaculture 179:277–290

    Article  Google Scholar 

  • Cassidy AA, Blier PU, Le François NR et al (2018) Effects of fasting and refeeding on protein and glucose metabolism in Arctic charr. Comp Biochem Physiol Part A Mol Integr Physiol 226:66–74

  • Dias WJ, Baviera AM, Zanon NM et al (2016) Lipolytic response of adipose tissue and metabolic adaptations to long periods of fasting in red tilapia (Oreochromis sp., Teleostei: Cichlidae). An Acad Bras Cienc 88:1743–1754

    Article  Google Scholar 

  • Fang Y, Xu X-Y, Tao L et al (2020) Effects of microRNA-731 on inflammation and apoptosis by targeting CiGadd45aa in grass carp. Fish Shellfish Immunol 97:493–499

  • Feng H, Cheng J, Luo J et al (2006) Cloning of black carp beta-actin gene and primarily detecting the function of its promoter region. Yi Chuan Xue Bao 33:133–140

    CAS  PubMed  Google Scholar 

  • Fimia GM, Sassone-Corsi P (2001) Cyclic AMP signalling. J Cell Sci 114:1971–1972

    Article  CAS  Google Scholar 

  • Fuentes EN, Kling P, Einarsdottir IE et al (2012) Plasma leptin and growth hormone levels in the fine flounder (Paralichthys adspersus) increase gradually during fasting and decline rapidly after refeeding. Gen Comp Endocrinol 177:120–127

  • Grabherr MG, Haas BJ, Yassour M et al (2013) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29:644

    Article  Google Scholar 

  • Gupta UC, Gupta SC (2020) Optimizing modifiable and lifestyle-related factors in the prevention of dementia disorders with special reference to alzheimer. Parkinson and Autism Diseases, Curr Nutr Food ence 15:900–911

  • Han X, Wu X, Chung WY et al (2009) Transcriptome of embryonic and neonatal mouse cortex by high-throughput RNA sequencing. Proc Natl Acad ences United States Am 106:12741–12746

    Article  CAS  Google Scholar 

  • Hu J, Le Q, Wang Y et al (2020) Comparative transcriptome analysis of olfactory epithelium in large yellow croaker: Evidence for olfactory adaptation to feed phagostimulant in fish. Aquaculture 519:734920

  • Hu MY, Shen YB, Xu XY et al (2016) Identification, characterization and immunological analysis of Ras related C3 botulinum toxin substrate 1 (Rac1) from grass carp Ctenopharyngodon idella. Dev Comp Immunol 54:20–31

    Article  CAS  Google Scholar 

  • Huang V, Butler AA, Lubin FD (2019) Telencephalon transcriptome analysis of chronically stressed adult zebrafish. Sci Rep 9:1379

    Article  Google Scholar 

  • Kanehisa M, Araki M, Goto S et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  CAS  Google Scholar 

  • Kirchner S, Panserat S, Lim PL et al (2008) The role of hepatic, renal and intestinal gluconeogenic enzymes in glucose homeostasis of juvenile rainbow trout. J Comp Physiol B, Biochem Syst Environ Physiol 178:429–438

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  • Li H, Xu W, Jin J et al (2018a) Effects of starvation on glucose and lipid metabolism in gibel carp (Carassius auratus gibelio var. CAS III). Aquaculture 496:166–175

  • Li R, Hongyu L, Beiping T et al (2018) Effects of starvation and refeeding on growth performance, glucose metabolism, and expression of glucose transporter 1 in Ctenopharyngodon idellus. J Fish Sci China 25:74–85

    Google Scholar 

  • Li S, Lu G, Zhou B (1995) Evaluation on the potential capacity of the swan oxbow for the conservation of the major Chinese carps. Aquaculture 137:46–47

    Google Scholar 

  • Lin X, Volkoff H, Narnaware Y et al (2000) Brain regulation of feeding behavior and food intake in fish. Comp Biochem Physiol Part A Mol Integr Physiol 126:415–434

    Article  CAS  Google Scholar 

  • Liu X, Shi H, He Q et al (2020) Effect of starvation and refeeding on growth, gut microbiota and non-specific immunity in hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂). Fish Shellfish Immunol 97:182–193

  • Love MI, Huber W, Anders S (2014) This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

  • Lu X, Chen H, Qian X, Gui J (2020) Transcriptome analysis of grass carp (Ctenopharyngodon idella) between fast- and slow-growing fish. Comp Biochem Physiol Part D Genomics Proteomics 35:100688

  • Maciel JC, Francisco CJ, Miranda-Filho KC (2018) Compensatory growth and feed restriction in marine shrimp production, with emphasis on biofloc technology. Aquac Int 26:203–212

  • Magnanou E, Klopp C, Noirot C et al (2014) Generation and characterization of the sea bass Dicentrarchus labrax brain and liver transcriptomes. Gene 544:56–66

    Article  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    Article  CAS  Google Scholar 

  • Midwood JD, Larsen MH, Aarestrup K, Cooke SJ (2016) Stress and food deprivation: linking physiological state to migration success in a teleost fish. J Exp Biol 219:3712–3718

  • Mininni AN, Milan M, Ferraresso S et al (2014) Liver transcriptome analysis in gilthead sea bream upon exposure to low temperature. BMC Genomics 15:765

    Article  Google Scholar 

  • Ntantali O, Malandrakis EE, Abbink W et al (2020) Whole brain transcriptomics of intermittently fed individuals of the marine teleost Sparus aurata. Comp Biochem Physiol Part D Genomics Proteomics 100737

  • Polakof S, Mommsen TP, Soengas JL (2011) Glucosensing and glucose homeostasis: from fish to mammals. Comp Biochem Physiol B Biochem Mol Biol 160:123–149

    Article  CAS  Google Scholar 

  • Power D, Melo J, Santos C (2005) The effect of food deprivation and refeeding on the liver, thyroid hormones and transthyretin in sea bream. J Fish Biol 56:374–387

    Article  Google Scholar 

  • Qian B, Xue L, Huang H (2016) Liver Transcriptome Analysis of the Large Yellow Croaker (Larimichthys crocea) during Fasting by Using RNA-Seq. PLoS One 11:e0150240

    Article  Google Scholar 

  • Ren Z, Wang S, Cai Y et al (2020) Antioxidant capacity, non-specific immunity, histopathological analysis and immune-related genes expression in Nile tilapia Oreochromis niloticus infected with Aeromonas schubertii. Aquaculture 529:735642

  • Rivas-Aravena A, Fuentes-Valenzuela M, Escobar-Aguirre S et al (2019) Transcriptomic response of rainbow trout (Oncorhynchus mykiss) skeletal muscle to Flavobacterium psychrophilum. Comp Biochem Physiol Part D Genomics Proteomics 31:100596

    Article  CAS  Google Scholar 

  • Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10:71–73

  • Shen Y, Ma K, Zhu Q et al (2020) Transcriptomic analysis reveals growth-related genes in juvenile grass carp, Ctenopharyngodon idella. Aquac Fish

  • Shen Y, Wang L, Fu J et al (2019) Population structure, demographic history and local adaptation of the grass carp. BMC Genomics 20:467

    Article  Google Scholar 

  • Takahashi LS, Biller JD, Criscuolo-Urbinati E, Urbinati EC (2015) Feeding strategy with alternate fasting and refeeding: effects on farmed pacu production. J Anim Physiol Anim Nutr 95:259–266

    Article  Google Scholar 

  • Tran NT, Xiong F, Hao YT et al (2018) Starvation influences the microbiota assembly and expression of immunity-related genes in the intestine of grass carp (Ctenopharyngodon idellus). Aquaculture 489:121–129

  • Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  Google Scholar 

  • Viegas I, Caballero-Solares A, Rito J et al (2014) Expressional regulation of key hepatic enzymes of intermediary metabolism in European seabass (Dicentrarchus labrax) during food deprivation and refeeding. Comp Biochem Physiol A Mol Integr Physiol 174:38–44

    Article  CAS  Google Scholar 

  • Wang J, Du J-J, Jiang B et al (2019) Effects of short-term fasting on the resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus agalactiae infection. Fish Shellfish Immunol 94:889–895

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: A revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  Google Scholar 

  • Wheat CW (2010) Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing. Genetica 138:433–451

    Article  CAS  Google Scholar 

  • Xu Y, Qi X, Hu M et al (2018) Transcriptome analysis of adipose tissue indicates that the cAMP signaling pathway affects the feed efficiency of pigs. Genes (Basel) 9:336

    Article  Google Scholar 

  • Yao Z, Scott K (2020) Glucose-sensing neurons reciprocally regulate insulin and glucagon. Trends Neurosci 43:2–5

  • Zhang Y, Chen P, Liang XF et al (2019) Metabolic disorder induces fatty liver in Japanese seabass, Lateolabrax japonicas fed a full plant protein diet and regulated by cAMP-JNK/NF-kB-caspase signal pathway. Fish Shellfish Immunol 90:223–234

  • Zhang J, Shen Y, Xu X, Dai Y, Li J (2020) Transcriptome analysis of the liver and muscle tissues of black carp (Mylopharyngodon piceus) of different growth rates. Mar Biotechnol 22:706–716

    Article  CAS  Google Scholar 

  • Zhang X, Shen Y, Xu X, Zhang M, Bai Y, Miao Y, Fang Y, Zhang Jiahua, Wang R, Li J (2018) Transcriptome analysis and histopathology of black carp (Mylopharyngodon piceus) spleen infected by Aeromonas hydrophila. Fish Shellfish Immunol 83:330–340

    Article  CAS  Google Scholar 

  • Zhao Y, Wang J, Thammaratsuntorn J et al (2015) Comparative transcriptome analysis of Nile tilapia (Oreochromis niloticus) in response to alkalinity stress. Genet Mol Res 14:17916–17926

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Weili Liu (Shanghai OE Biotech Technology Co., Ltd.) for her help with sequencing and data analysis.

Funding

This research was supported by China’s Agricultural Research System (CARS-45-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-bang Shen or Jia-Le Li.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, YF., Shen, Yb., Wang, ST. et al. RNA-Seq Transcriptome Analysis of the Liver and Brain of the Black Carp (Mylopharyngodon piceus) During Fasting. Mar Biotechnol 23, 389–401 (2021). https://doi.org/10.1007/s10126-021-10032-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-021-10032-9

Keywords

Navigation