Skip to main content
Log in

Transcriptome Analysis of the Liver and Muscle Tissues of Black Carp (Mylopharyngodon piceus) of Different Growth Rates

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we used RNA-seq to analyze the muscle and liver tissues of black carps (Mylopharyngodon piceus) of different growth rates from the same batch to evaluate their growth traits. We have two groups; they are the black carp group with fast-growth rate and the slow-growth rate. A total of 23,132 genes were enriched in the Gene Ontology analysis, and 285 related pathways were found in the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The KEGG pathway analysis showed significant differences in the expression of some genes involved in growth- and development-related metabolic pathways such as the FoxO signaling pathway, p53 signaling pathway, PI3K-Akt signaling pathway, apoptosis, TGF-β signaling pathway, and insulin signaling pathway. The numbers of differentially expressed genes in muscle and liver are 1913 and 1775. Nine of the differently expressed genes involved in the different growth traits and accuracy of the transcriptome data were validated using quantitative real-time PCR. We found that the expression levels of some growth-related genes were significantly higher in the fast-growth rate black carps than in the slow-growth rate black carps. The large number of transcriptome sequences obtained in this study has enriched the black carp gene resources, and the obtained differentially expressed genes and related pathway analysis provide valuable information for understanding the growth traits of the black carp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amstutz U, Giger T, Champigneulle A, Day PJR, Largiadèr CR (2006) Distinct temporal patterns of Transaldolase 1 gene expression in future migratory and sedentary brown trout (Salmo trutta). Aquaculture 260:326–336

    CAS  Google Scholar 

  • Arabac M, Diler B, Sar M (2004) Induction and synchronisation of ovulation in rainbow trout, Oncorhynchus mykiss, by administration of emulsified buserelin (GnRHa) and its effects on egg quality. Aquaculture 237:475–484

    Google Scholar 

  • Bolger AM, Marc L, Bjoern U (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet E, Montfort J, Esquerre D, Hugot K, Fostier A, Bobe J (2007) Effect of photoperiod manipulation on rainbow trout (Oncorhynchus mykiss) egg quality: a genomic study. Aquaculture 268:13–22

    Google Scholar 

  • Brigitte B, Amos B, Rolf A et al (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370

    Google Scholar 

  • Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    CAS  PubMed  Google Scholar 

  • Cole T, Williams BA, Geo P et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Google Scholar 

  • Fatih O, Philipp K, Sylvain F et al (2010) Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143:1018–1029

    Google Scholar 

  • Fu B, He S (2012) Transcriptome analysis of silver carp (Hypophthalmichthys molitrix) by paired-end RNA sequencing. DNA Res 19:131–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Moran Y et al (2011a) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011b) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29:644–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu M, Shen Y, Xu X et al (2016) Identification, characterization and immunological analysis of Ras related C3 botulinum toxin substrate 1 (Rac1) from grass carp Ctenopharyngodon idella. Dev Comp Immunol 54:20–31

    CAS  PubMed  Google Scholar 

  • Ishida M, Ohbayashi N, Maruta Y, Ebata Y, Fukuda M (2012) Functional involvement of Rab1A in microtubule-dependent anterograde melanosome transport in melanocytes. J Cell Sci 125:5177–5187

    CAS  PubMed  Google Scholar 

  • Jaina M, Finn RD, Eddy SR et al (2013) Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 41:e121–e121

    Google Scholar 

  • Jin C, Cai L, Rong H et al (2012) Transcriptome analysis of head kidney in grass carp and discovery of immune-related genes. BMC Vet Res 8:108

    Google Scholar 

  • Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao B, Rogozin IB, Smirnov S, Sorokin AV, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2004) A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5:R7–R7

    PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg S (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Jaroszewski L, Godzik A (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17:282–283

    CAS  PubMed  Google Scholar 

  • Li G, Zhao Y, Liu Z, Gao C, Yan F, Liu B, Feng J (2015) De novo assembly and characterization of the spleen transcriptome of common carp (Cyprinus carpio) using Illumina paired-end sequencing. Fish Shellfish Immunol 44:420–429

    CAS  PubMed  Google Scholar 

  • Li J, Tian Y, Liu J et al (2018) Lysine 39 of IKKε of black carp is crucial for its regulation on IRF7-mediated antiviral signaling. Fish Shellfish Immunol 77:410–418

    CAS  PubMed  Google Scholar 

  • Liao X, Cheng L, Xu P, Lu G, Wachholtz M, Sun X, Chen S (2013) Transcriptome analysis of crucian carp (Carassius auratus), an important aquaculture and hypoxia-tolerant species. PLoS One 8:e62308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Tsai P, Sun H et al (2014) Apolipoprotein J, a glucose-upregulated molecular chaperone, stabilizes core and NS5A to promote infectious hepatitis C virus virion production. J Hepatol 61:984–993

    CAS  PubMed  Google Scholar 

  • Love MI, Wolfgang H, Simon A (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    PubMed  PubMed Central  Google Scholar 

  • Lu X, Chen HM, Qian XQ, Gui JF (2020) Transcriptome analysis of grass carp (Ctenopharyngodon idella) between fast- and slow-growing fish. Comp Biochem Physiol Part D Genomics Proteomics 35:100688

    CAS  PubMed  Google Scholar 

  • Piferrer F, Guiguen Y (2008) Fish gonadogenesis. Part II: Molecular biology and genomics of sex differentiation. Rev Fish Sci 16:35–55

    CAS  Google Scholar 

  • Platten M, Wick W, Wild-Bode C et al (2000) Transforming growth factors β1 (TGF-β1) and TGF-β2 promote glioma cell migration via up-regulation of αVβ3 integrin expression. Biochem Biophys 268:607–611

    CAS  Google Scholar 

  • Pruitt KD, Tatiana T, Maglott DR (2005) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33:D501–D504

    CAS  PubMed  Google Scholar 

  • Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10:71–U99

    CAS  PubMed  Google Scholar 

  • Sifa L, Guoqing L, Biyuan Z (1995) Evaluation on the potential capacity of the swan oxbow for the conservation of the major Chinese carps. Aquaculture 137:46–47

    Google Scholar 

  • Stefan G, Juan Miguel GG, Javier T et al (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    Google Scholar 

  • Su J, Zhu Z, Wang Y, Jang S (2009) Isolation and characterization of Argonaute 2: a key gene of the RNA interference pathway in the rare minnow, Gobiocypris rarus. Fish Shellfish Immunol 26:164–170

    CAS  PubMed  Google Scholar 

  • Sun Y, Huang Y, Hu G, Zhang X, Ruan Z, Zhao X, Guo C, Tang Z, Li X, You X, Lin H, Zhang Y, Shi Q (2016) Comparative Transcriptomic study of muscle provides new insights into the growth superiority of a novel grouper hybrid. PLoS One 11:e0168802

    PubMed  PubMed Central  Google Scholar 

  • Taggart J, Bron J, Martin SA et al (2008) A description of the origins, design and performance of the TRAITS–SGP Atlantic salmon Salmo salar L. cDNA microarray. J Fish Biol 72:2071–2094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tran NT, Gao ZX, Zhao HH, Yi SK, Chen BX, Zhao YH, Lin L, Liu XQ, Wang WM (2015) Transcriptome analysis and microsatellite discovery in the blunt snout bream ( Megalobrama amblycephala ) after challenge with Aeromonas hydrophila. Fish Shellfish Immunol 45:72–82

    CAS  PubMed  Google Scholar 

  • Tschan MP, Fischer KM, Fung VS, Pirnia F, Borner MM, Fey MF, Tobler A, Torbett BE (2003) Alternative splicing of the human cyclin D-binding Myb-like protein (hDMP1) yields a truncated protein isoform that alters macrophage differentiation patterns. J Biol Chem 278:42750–42760

    CAS  PubMed  Google Scholar 

  • Wang C, Yoo Y, Fan H, Kim E, Guan KL, Guan JL (2010) Regulation of integrin β1 recycling to lipid rafts by Rab1a to promote cell migration. J Biol Chem 285:29398–29405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Yi L, Zhong S et al (2018) Transcriptome analysis of grass carp provides insights into the immune-related genes and pathways in response to MC-LR induction. Aquaculture 488:207–216

  • Weng M, Chen Z, Xiao Q, Li R, Chen Z (2018) A review of FGF signaling in palate development. Biomed Pharmacother 103:240–247

    CAS  PubMed  Google Scholar 

  • Wennberg A (2014) Food and agriculture organization of the United Nations

  • Xu J, Ji P, Zhao Z (2012) Genome-wide SNP discovery from transcriptome of four common carp strains. PLoS One 7:e48140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue T, Yu M, Pan Q, Wang Y, Fang J, Li L, Deng Y, Chen K, Wang Q, Chen T (2017) Black carp vasa identifies embryonic and gonadal germ cells. Dev Genes Evol 227:231–243

    CAS  PubMed  Google Scholar 

  • Yu H, Shen Y, Sun J, Xu X, Wang R, Xuan Y, Lu L, Li J (2014) Molecular cloning and functional characterization of the NFIL3/E4BP4 transcription factor of grass carp, Ctenopharyngodon idella. Dev Comp Immunol 47:215–222

    CAS  PubMed  Google Scholar 

  • Zhang Y, Sun C, Guo D et al (2016) Transcriptome analysis reveals the molecular mechanisms underlying growth superiority in a novel grouper hybrid (Epinephelus fuscogutatus♀×E. lanceolatus♂). BMC Genet 17:24

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Shen Y, Xu X, Zhang M, Bai Y, Miao Y, Fang Y, Zhang J, Wang R, Li J (2018) Transcriptome analysis and histopathology of black carp (Mylopharyngodon piceus) spleen infected by Aeromonas hydrophila. Fish Shellfish Immunol 83:330–340

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Weili Liu (Shanghai OE Biotech Technology Co. Ltd) for her help in sequencing and data analysis. We thank the native English-speaking scientists of Elixigen Company (Huntington Beach, CA) for editing our manuscript.

Funding

This research was supported by China’s Agricultural Research System (CARS-45-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yubang Shen or Jiale Li.

Ethics declarations

In this study, all experiments with the fish were conducted in accordance with the guidelines on the care and use of animals for scientific purposes set up by the Institutional Animal Care and Use Committee (IACUS) of Shanghai Ocean University, Shanghai, China. The IACUS approved this study within the project “Breeding of Black Carp” (approval number SHOU-16-014). The dissection experiments were performed with 3-aminobenzoic acid ethyl ester methanesulfonate (MS-222; Sigma, USA) anesthesia to minimize the suffering of the fish.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Shen, Y., Xu, X. et al. Transcriptome Analysis of the Liver and Muscle Tissues of Black Carp (Mylopharyngodon piceus) of Different Growth Rates. Mar Biotechnol 22, 706–716 (2020). https://doi.org/10.1007/s10126-020-09994-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-020-09994-z

Keywords

Navigation