Skip to main content
Log in

A Genome-Wide Association Study Identifies the Genomic Region Associated with Shell Color in Yesso Scallop, Patinopecten yessoensis

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The shell color polymorphism widely exists in economic shellfish, which not only results in a better visual perception but also shows great value as an economic trait for breeding. Small numbers of reddish-orange shell Yesso scallops, Patinopecten yessoensis, were found in cultured populations compared to the brown majority. In this study, a genome-wide association study was conducted to understand the genetic basis of shell color. Sixty-six 2b-RAD libraries with equal numbers of reddish-orange and brown shell individuals were constructed and sequenced using the Illumina HiSeq 2000 platform. A total of 322,332,684 high-quality reads were obtained, and the average sequencing depth was 18.4×. One genomic region on chromosome 11 that included 239 single-nucleotide polymorphisms (SNPs) was identified as significantly associated with shell color. After verification by high-resolution melting in another population, two SNPs were selected as specific loci for reddish-orange shell color. These two SNPs could be used to improve the selective breeding progress of true-breeding strains with complete reddish-orange scallops. In addition, within the significantly associated genomic region, candidate genes were identified using marker sequences to search the draft genome of Yesso scallop. Three genes (LDLR, FRIS, and FRIY) with known functions in carotenoid metabolism were identified. Further study using high-performance liquid chromatography proved that the relative level of carotenoids in the reddish-orange shells was 40 times higher than that in the brown shells. These results suggested that the accumulation of carotenoids contributes to the formation of reddish-orange shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anghileri LJ, Maincent P, Cordova-Martinez A (1993) On the mechanism of soft tissue calcification induced by complexed iron. Exp Toxicol Pathol 45:365–368

    Article  CAS  PubMed  Google Scholar 

  • Ayllon F, Kjærnersemb E, Furmanek T, Wennevik V, Solberg MF, Dahle G, Taranger GL, Glover KA, Almén MS, Rubin CJ (2015) The vgll3 locus controls age at maturity in wild and domesticated Atlantic Salmon (Salmo salar L.) males. PLoS Genet 11:e1005628

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai Z, Zheng H, Lin J, Wang G, Li J (2013) Comparative analysis of the transcriptome in tissues secreting purple and white nacre in the pearl mussel Hyriopsis cumingii. PLoS One 8:e0053617

    Google Scholar 

  • Bergamonti L, Bersani D, Mantovan S, Lottici PP (2013) Micro-Raman investigation of pigments and carbonate phases in corals and molluscan shells. Eur J Mineral 25:845–853

    Article  CAS  Google Scholar 

  • Brand E, Kijima A, Fujio Y (1994) Shell color polymorphism and growth in the Japanese scallop, Patinopecten yessoensis. Tohoku J Agr Res 44:67–76

    Google Scholar 

  • Brown MS, Goldstein JL (1986) Cheminform abstract: a receptor-mediated pathway for cholesterol homeostasis (Nobel lecture). Chemischer Informationsdienst 25:583–602

    Google Scholar 

  • Budd A, Mcdougall C, Green K, Degnan BM (2014) Control of shell pigmentation by secretory tubules in the abalone mantle. Front Zool 11:1–9

    Article  Google Scholar 

  • Chanley P (1961) Inheritance of shell markings and growth in the hard clam, Venus mercenaria. Proc Natl Shellfish Assoc 50:161–169

    Google Scholar 

  • Clark MS, Thorne MA, Vieira FA, Cardoso JC, Power DM, Peck LS (2010) Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genomics 11:362

    Article  PubMed  PubMed Central  Google Scholar 

  • Comfort A (1951) The pigmentation of molluscan shells. Biol Rev 26:285–301

    Article  CAS  Google Scholar 

  • Correa K, Lhorente JP, Bassini L, López ME, Genova AD, Maass A, Davidson WS, Yáñez JM (2016) Genome wide association study for resistance to Caligus rogercresseyi in Atlantic salmon (Salmo salar L.) using a 50K SNP genotyping array. Aquaculture. doi:10.1016/j.aquaculture.2016.04.008

    Google Scholar 

  • Dele-Dubois M, Merlin J (1981) Etude par spectroscopie Raman de la pigmentation du squelette calcaire du corail. Revue de Gemmologie 68:10–13

    Google Scholar 

  • Ding J, Zhao L, Chang Y, Zhao W, Du Z, Hao Z (2015) Transcriptome sequencing and characterization of Japanese scallop Patinopecten yessoensis from different shell color lines. PLoS One 10(2):e0116406

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans F, Matson S, Brake J, Langdon C (2004) The effects of inbreeding on performance traits of adult Pacific oysters (Crassostrea gigas). Aquaculture 230:89–98

    Article  Google Scholar 

  • Fahed AC, Nemer GM (2011) Familial hypercholesterolemia: the lipids or the genes? Nutr Metab 8:1–12

    Article  Google Scholar 

  • Gabbiani G, Tuchweber B (1963) The role of iron in the mechanism of experimental calcification. J Histochem Cytochem 11:799–803

    Article  CAS  Google Scholar 

  • Ge J, Qi L, Hong Y, Kong L (2015) Identification of single-locus PCR-based markers linked to shell background color in the Pacific oyster (Crassostrea gigas). Mar Biotechnol 17:655–662

    Article  CAS  PubMed  Google Scholar 

  • Geng X, Sha J, Liu S, Bao L, Zhang J, Wang R, Yao J, Li C, Feng J, Sun F, Sun L, Jiang C, Zhang Y, Chen A, Dunham R, Zhi D, Liu Z (2015) A genome-wide association study in catfish reveals the presence of functional hubs of related genes within QTLs for columnaris disease resistance. BMC Genomics 16:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Geng X, Liu S, Yao J, Bao L, Zhang J, Li C, Wang R, Sha J, Zeng P, Zhi D (2016) A genome-wide association study identifies multiple regions associated with head size in catfish. G3 (Bethesda) 6:3389–3398

  • Gong X, Marisiddaiah R, Afeld J, Wiener D, Rubin LP (2011) Functional role of xanthophyll metabolism related genes in human retinal pigment epithelial cells. FASEB J 25:975.17

    Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203

    Article  PubMed  Google Scholar 

  • Hecht BC, Campbell NR, Holecek DE, Narum SR (2013) Genome-wide association reveals genetic basis for the propensity to migrate in wild populations of rainbow and steelhead trout. Mol Ecol 22:3061–3076

    Article  CAS  PubMed  Google Scholar 

  • Hedegaard C, Bardeau J-F, Chateigner D (2006) Molluscan shell pigments: an in situ resonance Raman study. J Molluscan Stud 72:157–162

    Article  Google Scholar 

  • Heller J (1992) Shell colour variation in Bullia digitalis, a sand-dwelling, intertidal whelk (Gastropoda: Prosobranchia). Biol J Linn Soc 46:247–258

    Article  Google Scholar 

  • Huang R, Zheng Z, Wang Q, Zhao X, Deng Y, Jiao Y, Du X (2015) Mantle branch-specific RNA sequences of moon scallop Amusium pleuronectes to identify shell color-associated genes. PLoS One 10(10):e0141390

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwamoto T, Hosoda K, Hirano R, Kurata H, Matsumoto A, Miki W, Kamiyama M, Itakura H, Yamamoto S, Kondo K (2000) Inhibition of low-density lipoprotein oxidation by astaxanthin. J Atheroscler Thromb 7:216–222

    Article  CAS  PubMed  Google Scholar 

  • Jacobsson LS, Yuan XB, Olsson AG (2004) Effects of alpha-tocopherol and astaxanthin on LDL oxidation and atherosclerosis in WHHL rabbits. Atherosclerosis 173:231–237

    CAS  PubMed  Google Scholar 

  • Jiao W, Fu X, Dou J, Li H, Su H, Mao J, Yu Q, Zhang L, Hu X, Huang X, Wang Y, Wang S, Bao Z (2014) High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing: building up an integrative genomic framework for a bivalve mollusc. DNA Res 21:85–101

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Zhou T, Geng X, Liu S, Chen A, Yao J, Jiang C, Tan S, Su B, Liu Z (2016) A genome-wide association study of heat stress-associated SNPs in catfish. Anim Genet. doi:10.1111/age.12482

    Google Scholar 

  • Kong P, Wang L, Zhang H, Zhou Z, Qiu L, Gai Y, Song L (2010) Two novel secreted ferritins involved in immune defense of Chinese mitten crab Eriocheir sinensis. Fish Shellfish Immunol 28:604–612

    Article  CAS  PubMed  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Hu J, Wang S, Cheng J, Hu X, Lu Z, Lin Z, Zhu W, Bao Z (2010) Isolation and identification of the main carotenoid pigment from the rare orange muscle of the Yesso scallop. Food Chem 118:616–619

    Article  CAS  Google Scholar 

  • Liu X, Wu F, Zhao H, Zhang G, Guo X (2009) A novel shell color variant of the Pacific abalone Haliotis discus hannai Ino subject to genetic control and dietary influence. J Shellfish Res 28:419–424

    Article  CAS  Google Scholar 

  • Liu S, Vallejo RL, Palti Y, Gao G, Marancik DP, Hernandez AG, Wiens GD (2015) Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout. Front Genet 6:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Li Y, Li Y, Wang Y, Wang S, Bao Z, Zheng R (2015) Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy. Spectrochim Acta B At Spectrosc 110:63–69

    Article  CAS  Google Scholar 

  • Matsuno T, Hiraoka K, Maoka T (1981) Carotenoids in the gonad of scallops (Pactinopecten yessoensis). Bull Jpn Soc Sci Fish 47:385–390

    Article  CAS  Google Scholar 

  • Miki W, Yamaguchi K, Konosu S (1982) Comparison of carotenoids in the ovaries of marine fish and shellfish. Comp Biochem Physiol B 71:7–11

    Article  CAS  PubMed  Google Scholar 

  • Mitton JB (1977) Shell color and pattern variation in Mytilus edulis and its adaptive significance. Chesap Sci 18:387–390

    Article  Google Scholar 

  • Nagai K, Yano M, Morimoto K, Miyamoto H (2007) Tyrosinase localization in mollusc shells. Comp Biochem Physiol B Biochem Mol Biol 146:207–214

    Article  PubMed  Google Scholar 

  • Narum SR, Campbell NR, Meyer KA, Miller MR, Hardy RW (2013) Thermal adaptation and acclimation of ectotherms from differing aquatic climates. Mol Ecol 22:3090–3097

    Article  PubMed  Google Scholar 

  • Newkirk GF (1980) Genetics of shell color in Mytilus edulis L. and the association of growth rate with shell color. J Exp Mar Biol Ecol 47:89–94

    Article  Google Scholar 

  • Osono Y, Woollett LA, Herz J, Dietschy JM (1995) Role of the low density lipoprotein receptor in the flux of cholesterol through the plasma and across the tissues of the mouse. J Clin Invest 95:1124–1132

  • Peignon J-M, Gerard A, Naciri Y, Ledu C, Phelipot P (1995) Analysis of shell colour determinism in the manila clam Ruditapes philippinarum. Aquat Living Resour 8:181–189

    Article  Google Scholar 

  • Pharoah DP, Tsai YY, Ramus SJ, Phelan CM (2013) GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet 45:1–2

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, vol 2. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schulz KG, Zondervan I, Gerringa LJ, Timmermans KR, Veldhuis MJ, Riebesell U (2004) Effect of trace metal availability on coccolithophorid calcification. Nature 430:673–676

    Article  CAS  PubMed  Google Scholar 

  • Shi M, Lin Y, Xu G, Xie L, Hu X, Bao Z, Zhang R (2013) Characterization of the Zhikong scallop (Chlamys farreri) mantle transcriptome and identification of biomineralization-related genes. Mar Biotechnol 15:706–715

    Article  CAS  PubMed  Google Scholar 

  • Sokolova IM, Berger VJ (2000) Physiological variation related to shell colour polymorphism in White Sea Littorina saxatilis. J Exp Mar Biol Ecol 245:1–23

    Article  Google Scholar 

  • Sun X, Liu Z, Zhou L, Wu B, Dong Y, Yang A (2016) Integration of next generation sequencing and EPR analysis to uncover molecular mechanism underlying shell color variation in scallops. PLoS One 11(8):e0161876

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai HY, Hamilton A, Tinch AE, Guy DR, Gharbi K, Stear MJ, Matika O, Bishop SC, Houston RD (2015) Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array. BMC Genomics 16:969

    Article  PubMed  PubMed Central  Google Scholar 

  • Visscher PM, Brown Matthew A, McCarthy Mark I, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90:7–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada KT, Komaru A (1994) Effect of selection for shell coloration on growth rate and mortality in the Japanese pearl oyster, Pinctada fucata martensii. Aquaculture 125:59–65

    Article  Google Scholar 

  • Wang S, Zhang L, Meyer E, Matz MV (2009) Construction of a high-resolution genetic linkage map and comparative genome analysis for the reef-building coral Acropora millepora. Genome Biol 10:R126

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Meyer E, Mckay JK, Matz MV (2012) 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods 9:808–810

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu S, Jiang C, Geng X, Zhou T, Li N, Bao L, Li Y, Yao J, Yang Y, Zhong X, Jin Y, Dunham R, Liu Z (2017) Multiple across-strain and within-strain QTLs suggest highly complex genetic architecture for hypoxia tolerance in channel catfish. Mol Gen Genomics 292:63–76

    Article  CAS  Google Scholar 

  • Whiteley DAA, Owen DF, Smith DAS (1997) Massive polymorphism and natural selection in Donacilla cornea (Poli, 1791) (Bivalvia: Mesodesmatidae). Biol J Linn Soc 62:475–494

    Google Scholar 

  • Winkler FM, Estévez BF, Jollán LB, Garrido JP (2001) Inheritance of the general shell color in the scallop Argopecten purpuratus (Bivalvia: Pectinidae). J Hered 92:521–525

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Seo JM, Nguyen A, Pham TX, Park HJ, Park Y, Kim B (2011) Astaxanthin-rich extract from the green alga Haematococcus pluvialis lowers plasma lipid concentrations and enhances antioxidant defense in apolipoprotein E knockout mice. J Nutr 141:1611–1617

    Article  CAS  PubMed  Google Scholar 

  • Zhang G (2001) Raman spectra of carotenoid in the nacre of Hyriopsis cumingii (lea) shell. Acta Mineral Sin 3:024

    Google Scholar 

  • Zhang J, Fang J, Wang S (2008) Carrying capacity for Patinopecten yessoensis in Zhang Zidao Island, China. J Fish China 32(2):236–241

    Google Scholar 

  • Zhang Y, Zhang R, Zou J, Hu X, Wang S, Zhang L, Bao Z (2013) Identification and characterization of four ferritin subunits involved in immune defense of the Yesso scallop (Patinopecten yessoensis). Fish Shellfish Immunol 34:1178–1187

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li L, Zhu Y, Zhang G, Guo X (2014a) Transcriptome analysis reveals a rich gene set related to innate immunity in the eastern oyster (Crassostrea virginica). Mar Biotechnol 16:17–23

    Article  PubMed  Google Scholar 

  • Zhang Y, Zhang L, Jin S, Qiu J, Hu X, Hu J, Bao Z (2014b) Proteomic analysis identifies proteins related to carotenoid accumulation in Yesso scallop (Patinopecten yessoensis). Food Chem 147:111–116

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Zhang G, Liu X (2005) Comparison of growth and survival of larvae among different shell color stocks of bay scallop Argopecten irradians irradians (Lamarck 1819). Chin J Oceanol Limnol 23:183–188

    Article  Google Scholar 

  • Zheng H, Liu H, Tao Z, Wang S, Sun Z, Liu W, Li Y (2010) Total carotenoid differences in scallop tissues of Chlamys nobilis (bivalve: Pectinidae) with regard to gender and shell colour. Food Chem 122:1164–1167

    Article  CAS  Google Scholar 

  • Zheng H, Zhang T, Sun Z, Liu W, Liu H (2013) Inheritance of shell colours in the noble scallop Chlamys nobilis (bivalve: Pectinidae). Aquac Res 44:1229–1235

    Article  CAS  Google Scholar 

  • Zhou T, Liu S, Geng X, Jin Y, Jiang C, Bao L, Yao J, Zhang Y, Zhang J, Sun L (2017) GWAS analysis of QTL for enteric septicemia of catfish and their involved genes suggest evolutionary conservation of a molecular mechanism of disease resistance. Mol Gen Genomics 292:231–242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dalian Zhangzidao Fishery Group Co., Ltd. (Dalian, China) for providing the scallop materials. This research was funded by the Earmarked Fund for Modern Agro-industry Technology Research System (CARS-48) and the Seed Improvement Project of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoting Huang or Zhenmin Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Li, Y., Li, Y. et al. A Genome-Wide Association Study Identifies the Genomic Region Associated with Shell Color in Yesso Scallop, Patinopecten yessoensis . Mar Biotechnol 19, 301–309 (2017). https://doi.org/10.1007/s10126-017-9751-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-017-9751-y

Keywords

Navigation