Skip to main content
Log in

Expression Characterization of Stress Genes Under High and Low Temperature Stresses in the Pacific Oyster, Crassostrea gigas

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

As a characteristic sessile inhabitant of the intertidal zone, the Pacific oyster Crassostrea gigas occupies one of the most physically stressful environments on earth. With high exposure to terrestrial conditions, oysters must tolerate broad fluctuations in temperature range. However, oysters’ cellular and molecular responses to temperature stresses have not been fully characterized. Here, we analyzed oyster transcriptome data under high and low temperatures. We also identified over 30 key temperature stress-responsive candidate genes, which encoded stress proteins such as heat shock proteins and apoptosis-associated proteins. The expression characterization of these genes under short-term cold and hot environments (5 and 35 °C) and long-term cold environments (5 °C) was detected by quantitative real-time PCR. Most of these genes reached expression peaks during the recovery stage after 24 h of heat stress, and these genes were greatly induced around day 3 in long-term cold stress while responded little to short-term cold stress. In addition, in the second heat stress after 2 days of recovery, oysters showed milder expression in these genes and a lower mortality rate, which indicated the existence of plasticity in the oyster’s response to heat stress. We confirmed that homeostatic flexibility and anti-apoptosis might be crucial centers of temperature stress responses in oysters. Furthermore, we analyzed stress gene families in 11 different species and found that the linage-specific expansion of stress genes might be implicated in adaptive evolution. These results indicated that both plasticity and evolution played an important role in the stress response adaptation of oysters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akberali H, Trueman E (1985) Effects of environmental stress on marine bivalve molluscs. Adv Mar Biol 22:101–198

    Article  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    CAS  PubMed  Google Scholar 

  • Berger VJ, Kharazova AD (1997) Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia 355:115–126

    Article  CAS  Google Scholar 

  • Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP et al (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460:352–U365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthelin C, Kellner K, Mathieu M (2000) Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (west coast of France). Comp Biochem Physiol B Biochem Mol Biol 125:359–369

    Article  CAS  PubMed  Google Scholar 

  • Blake JA, Grassle JP, Eckelbarger KJ (2009) Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. In: Maciolek NJ, Blake JA (eds) Proceedings of the 9th International Polychaete Conference (Zoosymposia 2), vol 2. Magnolia Press, New Zealand, pp 25–53

  • Boutet I, Tanguy A, Rousseau S, Auffret M, Moraga D (2003) Molecular identification and expression of heat shock cognate 70 (hsc70) and heat shock protein 70 (hsp70) genes in the Pacific oyster Crassostrea gigas. Cell Stress Chaperones 8:76–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briknarova K, Takayama S, Brive L, Havert ML, Knee DA et al (2001) Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat Struct Biol 8:349–352

    Article  CAS  PubMed  Google Scholar 

  • C. Elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  • Cameron RA, Samanta M, Yuan A, He D, Davidson E (2009) SpBase: the sea urchin genome database and web site. Nucleic Acids Res 37:D750–D754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SA, Yang PC, Jiang F, Wei YY, Ma ZY et al (2010) De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits. PLoS One 5:e15633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clegg JS, Uhlinger KR, Jackson SA, Cherr GN, Rifkin E et al (1998) Induced thermotolerance and the heat shock protein-70 family in the Pacific oyster Crassostrea gigas. Mol Mar Biol Biotechnol 7:21–30

    CAS  Google Scholar 

  • Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A et al (2011) The ecoresponsive genome of Daphnia pulex. Science 331:555–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig EA, Ingolia TD, Manseau LJ (1983) Expression of Drosophila heat-shock cognate genes during heat-shock and development. Dev Biol 99:418–426

    Article  CAS  PubMed  Google Scholar 

  • Delaporte M, Soudant P, Lambert C, Moal J, Pouvreau S et al (2006) Impact of food availability on energy storage and defense related hemocyte parameters of the Pacific oyster Crassostrea gigas during an experimental reproductive cycle. Aquaculture 254:571–582

    Article  Google Scholar 

  • Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155

    Article  CAS  PubMed  Google Scholar 

  • Du YS, Zhang LL, Xu F, Huang BY, Zhang GF et al (2013) Validation of housekeeping genes as internal controls for studying gene expression during Pacific oyster (Crassostrea gigas) development by quantitative real-time PCR. Fish Shellfish Immunol 34:939–945

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29:51–63

    Article  PubMed  Google Scholar 

  • Farcy E, Voiseux C, Lebel JM, Fievet B (2009) Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress. Cell Stress Chaperones 14:371–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenberg PB, Rivadeneira MM (2011) Range limits and geographic patterns of abundance of the rocky intertidal owl limpet, Lottia gigantea. J Biogeogr 38:2286–2298

    Article  Google Scholar 

  • Ferri KF, Kroemer G (2001) Mitochondria—the suicide organelles. Bioessays 23:111–115

    Article  CAS  PubMed  Google Scholar 

  • Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M et al (2012) The genome portal of the department of energy joint genome institute. Nucleic Acids Res 40:D26–D32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo XM (2009) Use and exchange of genetic resources in molluscan aquaculture. Rev Aquac 1:251–259

    Article  Google Scholar 

  • Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW (2013) Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol 30:1987–1997

    Article  CAS  PubMed  Google Scholar 

  • Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22:2971–2972

    Article  CAS  PubMed  Google Scholar 

  • Hightower LE (1993) A brief perspective on the heat-shock response and stress proteins. Mar Environ Res 35:79–83

    Article  CAS  Google Scholar 

  • Hofmann GE, Somero GN (1995) Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. J Exp Biol 198:1509–1518

    CAS  PubMed  Google Scholar 

  • Ingolia TD, Craig EA (1982) Drosophila gene related to the major heat shock-induced gene is transcribed at normal temperatures and not induced by heat-shock. Proc Natl Acad Sci U S A 79:525–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanina AV, Taylor C, Sokolova IM (2009) Effects of elevated temperature and cadmium exposure on stress protein response in eastern oysters Crassostrea virginica (Gmelin). Aquat Toxicol 91:245–254

    Article  CAS  PubMed  Google Scholar 

  • Jackson SA, Uhlinger KR, Clegg JS (2011) Duration of induced thermal tolerance and tissue-specific expression of hsp/hsc70 in the eastern oyster, Crassostrea virginica and the Pacific oyster, Crassostrea gigas. Aquaculture 317:168–174

    Article  CAS  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G (2001) Mitochondria in apoptosis: the suicide organelles. Mol Biol Cell 12:398a

    Google Scholar 

  • Kruidering M, Evan GI (2000) Caspase-8 in apoptosis: the beginning of “the end”? IUBMB Life 50:85–90

    Article  CAS  PubMed  Google Scholar 

  • Lang RP, Bayne CJ, Camara MD, Cunningham C, Jenny MJ et al (2009) Transcriptome profiling of selectively bred Pacific oyster Crassostrea gigas families that differ in tolerance of heat shock. Mar Biotechnol 11:650–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-delta delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Marygold SJ, Leyland PC, Seal RL, Goodman JL, Thurmond J et al (2013) FlyBase: improvements to the bibliography. Nucleic Acids Res 41:D751–D757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meistertzheim AL, Tanguy A, Moraga D, Thebault MT (2007) Identification of differentially expressed genes of the Pacific oyster Crassostrea gigas exposed to prolonged thermal stress. FEBS J 274:6392–6402

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  • Portner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A Mol Integr Physiol 132:739–761

    Article  CAS  PubMed  Google Scholar 

  • Portner HO, Farrell AP (2008) Ecology: physiology and climate change. Science 322:690–692

    Article  PubMed  Google Scholar 

  • Privalov PL, Gill SJ (1989) The hydrophobic effect: a reappraisal. Pure Appl Chem 61:1097–1104

    Article  CAS  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    Article  CAS  PubMed  Google Scholar 

  • Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–U1063

    Article  CAS  PubMed  Google Scholar 

  • Rao RV, Peel A, Logvinova A, del Rio G, Hermel E et al (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514:122–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raoa RV, Peela A, Logvinovaa A (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514:122–128

    Article  Google Scholar 

  • Reich M, Liefeld T, Gould J, Lerner J, Tamayo P et al (2006) GenePattern 2.0. Nat Genet 38:500–501

    Article  CAS  PubMed  Google Scholar 

  • Riddle DL (1977) Genetic pathway for dauer larva formation in Caenorhabditis elegans. J Supramol Struct 70–70

  • Saunders DS, Henrich VC, Gilbert LI (1989) Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc Natl Acad Sci U S A 86:3748–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamseldin AA, Clegg JS, Friedman CS, Cherr GN, Pillai MC (1997) Induced thermotolerance in the Pacific oyster, Crassostrea gigas. J Shellfish Res 16:487–491

    Google Scholar 

  • Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA et al (2006) Research article—The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952

    Article  PubMed  Google Scholar 

  • Sokolova IM (2009) Apoptosis in molluscan immune defense. Invertebr Surviv J 6:49–58

    Google Scholar 

  • Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68

    Article  CAS  PubMed  Google Scholar 

  • Stillman JH, Somero GN (1996) Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distribution. J Exp Biol 199:1845–1855

    PubMed  Google Scholar 

  • Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomanek L, Somero GN (1999) Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: Implications for limits of thermotolerance and biogeography. J Exp Biol 202:2925–2936

    PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang HY, Zhang GF, Lio X, Guo XM (2008) Classification of common oysters from North China. J Shellfish Res 27:495–503

    Article  CAS  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  CAS  PubMed  Google Scholar 

  • Yuan SC, Liu HL, Gu M, Xu LQ, Huang SF et al (2010) Characterization of the extrinsic apoptotic pathway in the basal chordate amphioxus. Sci Signal 3:ra66

    Article  PubMed  Google Scholar 

  • Zhang LL, Hou R, Su HL, Hu XL, Wang S et al (2012a) Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock. PLoS One 7:e35484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GF, Fang XD, Guo XM, Li L, Luo RB et al (2012b) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Jinpeng Wang, Yingxiang Li, Baoyu Huang, and Wen Huang for sample collection and RNA preparation. We are grateful to Jun Liu and Dr. Tao Qu for their help in the primer design. We thank Dr. Haigang Qi and Dr. Fei Xu for their bioinformatic expertise. We appreciate the help from Mr. Bo Li and Mr. Xiaodong Fang of BGI-Shenzhen with the use of CAFE software.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Li or Guofan Zhang.

Ethics declarations

Funding

This research was supported by National Natural Science Foundation of China (31572620), National Basic Research Program of China (973 Program) (2010CB126402), Earmarked fund for Modern Agro-industry Technology Research System (CARS-48) and Taishan Scholars Climbing Program of Shandong.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(FASTA 19 kb)

(FASTA 16 kb)

(FASTA 67 kb)

(FASTA 74 kb)

(FASTA 232 kb)

(FASTA 76 kb)

(FASTA 39 kb)

(FASTA 141 kb)

(FASTA 36 kb)

(FASTA 77 kb)

Table S1

Shell morphological parameters of oyster samples (DOCX 238 kb)

Table S2

Housekeeping genes and their primer sequences used for endogenous control gene validation (XLSX 11 kb)

Table S3

GO terms and numbers of DEGs in Fig. 3 (DOCX 18 kb)

Table S4

The result of the program CAFE (XLSX 17 kb)

Table S5

Primers of temperature-responsive genes used in Q-RT-PCR (XLSX 12 kb)

Table S6

RPKM values of temperature responsive genes in the transcriptome data (DOCX 25 kb)

Table S7

Detailed Q-RT-PCR results for the responsive genes including individual values, mean values, standard deviations and statistical results (XLSX 15 kb)

Fig. S1

Average expression stability value (M) of housekeeping genes. (XLSX 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Zhang, L., Li, L. et al. Expression Characterization of Stress Genes Under High and Low Temperature Stresses in the Pacific Oyster, Crassostrea gigas . Mar Biotechnol 18, 176–188 (2016). https://doi.org/10.1007/s10126-015-9678-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9678-0

Keywords

Navigation