Skip to main content

Advertisement

Log in

Proteomic Approach to Skin Regeneration in a Marine Teleost: Modulation by Oestradiol-17β

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Skin and scale formation and regeneration in teleosts have mainly been described from a morphological perspective, and few studies of the underlying molecular events exist. The present study evaluates (1) the change in the skin proteome during its regeneration in a marine teleost fish (gilthead sea bream, Sparus aurata) and (2) the impact of oestradiol-17β (Ε2) on regeneration and the involvement of oestrogen receptor (ER) isoforms. Thirty-five candidate proteins were differentially expressed (p < 0.05) between intact and regenerated skin proteome 5 days after scale removal, and 27 proteins were differentially expressed after E2 treatment. Agglomerative hierarchical clustering of the skin proteome revealed that the skin treated with E2 clustered most closely to intact skin, while regenerating untreated skin formed an independent cluster. Gene Ontology classification associated the differentially expressed proteins in E2-treated skin with developmental processes and cellular morphogenesis. The proteins modified during skin regeneration suggest a balance exists between immune response and anatomical repair. Overall, the results indicate that, even after 5 days regeneration, the composition of mature skin is not attained, and endocrine factors, in particular E2, can accelerate wound repair acting possibly via ERβs expressed in the skin-scales. Several candidate proteins probably involved in scale development, osteoglycin, lipocalin2 and lamin A and the transcription factors PHD and grainyhead were identified. Future studies of fish skin regeneration will be required to provide further insight into this multistage process, and the present study indicates it will be useful to explore immune adaptations of epithelia permanently exposed to an aqueous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional electrophoresis

ACN:

Acetonitrile

Ca:

Calcium

DTT:

Dithiothreitol

E2 :

Oestradiol-17β

ER:

Oestrogen receptor

LC:

Liquid chromatography

MALDI-TOF:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometer

MS:

Mass spectrometry

P:

Phosphorus

PBS:

Phosphate-buffered saline

PMF:

Peptide mass fingerprinting

qPCR:

Quantitative polymerase chain reaction

RT:

Reverse trancriptase

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

Vgt:

Vitellogenin

ACTA1:

Actin

ACTB:

Skeletal alpha-actin type 2b

ACTB:

Actin beta

ACTC1:

Actin, alpha cardiac muscle 1

ALDH1A1:

Aldehyde dehydrogenase

ANXA3:

Annexin max 3

C1QL4:

Complement c1q-like protein 4

CFL2:

Cofilin 2

CKM:

Muscle-type creatine kinase

COL1A1:

Collagen type I alpha 1

COL6A1:

Collagen type VI alpha 1

COL6A3:

Collagen type VI alpha 3

CP:

Ceruloplasmin

DPYS:

Dihydropyrimidinase

GAPDH:

Glyceraldehide 3P dehydrogenase

GRLH1:

Grainyhead-like protein

IGKV:

Immunoglobulin light chain

IMPA1:

Myo-inositol monophosphatase

KRT:

Keratin

LCN2:

Tributyltin binding protein type 2

LMNA:

Lamin A

MYH:

Myosin heavy chain

MYL:

Myosin light chain

NDK:

Nucleoside diphosphate kinase B

OGN:

Osteoglycin

PHF3:

PHD finger protein 3

TF:

Transferrin

WAP65:

WT acclimation-related protein

References

  • Arason G (1996) Lectins as defence molecules in vertebrates and invertebrates. Fish Shellfish Immunol 6:277–289

    Article  Google Scholar 

  • Armour KJ, Lehane DB, Pakdel F, Valotaire Y, Graham R, Russell RG, Henderson IW (1997) Estrogen receptor mRNA in mineralized tissues of rainbow trout: calcium mobilization by estrogen. FEBS Lett 411:145–148

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft GS, Dodsworth J, van Boxtel E, Tarnuzzer RW, Horan MA, Schultz GS, Ferguson MW (1997) Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. Nat Med 3:1209–1215

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft GS, Greenwell-Wild T, Horan MA, Wahl SM, Ferguson MW (1999) Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am J Pathol 155:1137–1146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashworth JJ, Smyth JV, Pendleton N, Horan M, Payton A, Worthington J, Ollier WE, Ashcroft GS (2005) The dinucleotide (CA) repeat polymorphism of estrogen receptor beta but not the dinucleotide (TA) repeat polymorphism of estrogen receptor alpha is associated with venous ulceration. J Steroid Biochem Mol Biol 97:266–270

    Article  CAS  PubMed  Google Scholar 

  • Bereiter-Hahn J, Zylberberg L (1993) Regeneration of teleost fish scale. Comp Biochem Physiol 105A:625–641

    Article  Google Scholar 

  • Bjellqvist B, Pasquali C, Ravier F, Sanchez JC, Hochstrasser D (1993) A nonlinear wide-range immobilized pH gradient for two-dimensional electrophoresis and its definition in a relevant pH scale. Electrophoresis 14:1357–1365

    Article  CAS  PubMed  Google Scholar 

  • Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19:833–842

    Article  PubMed  Google Scholar 

  • Bos JD, Pasch MC, Asghar SS (2001) Defensins and complementsystems from the perspective of skin immunity and autoimmunity. Clin Dermatol 19:563–572

    Article  CAS  PubMed  Google Scholar 

  • Braiman-Wiksman L, Solomonik I, Spira R, Tennenbaum T (2007) Novel insights into wound healing sequence of events. Toxicol Pathol 35:767–779

    Article  PubMed  Google Scholar 

  • Caddy J, Wilanowski T, Darido C, Dworkin S, Ting SB, Zao Q, Rank G, Auden A, Srivastava S, Papenfuss TA, Murdoch JN, Humbert PO, Boulos N, Weber T, Zuo J, Cunningham JM, Jane SM (2010) Epidermal wound repair is regulated by the planar cell polarity signaling pathway. Dev Cell 9(1):138–147

    Article  Google Scholar 

  • Campinho MA, Silva N, Sweeney GE, Power DM (2007) Molecular, cellular and histological changes in skin from a larval to an adult phenotype during bony fish metamorphosis. Cell Tissue Res 327:267–284

    Article  CAS  PubMed  Google Scholar 

  • Chamcheu JC, Siddi IA, Syed DN, Adhami VM, Liovic M, Mukhtar H (2011) Keratin gene mutations in disorders of human skin and its appendages. Arch Biochem Biophys 508:123–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chan CYX, Masui O, Krakovska O, Belozerov VE, Voisin S, Ghanny S, Chen J, Moyez D, Zhu P, Evans KR, McDermott JC, Siu KWM (2011) Identification of differentially regulated secretome components during skeletal myogenesis. Mol Cell Proteomics 10(5):M110.004804

    Article  PubMed Central  PubMed  Google Scholar 

  • Dodds AW, Petry F (1993) The phylogeny and evolution of the first component of complement, C1. Behring Instit Mitt 93:87–102

    CAS  Google Scholar 

  • Emmerson E, Hardman MJ (2012) The role of estrogen deficiency in skin ageing and wound healing. Biogerontology 13(1):3–20

    Article  CAS  PubMed  Google Scholar 

  • Fischer U, Struss AK, Hemmer D, Michel A, Henn W, Steudel WI, Meese E (2001) PHF3 expression is frequently reduced in glioma. Cytogenet Cell Genet 94(3–4):131–136

    Article  CAS  PubMed  Google Scholar 

  • Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frangioni JV, Neel BG (1993) Use of a general purpose mammalian expression vector for studying intracellular protein targeting: Identification of critical residues in the nuclear lamin A/C nuclear localization signal. J Cell Sci 1993(105):481–488

    Google Scholar 

  • Gabel SA, Walker VR, London RE, Steenbergen C, Korach KS, Murphy E (2005) Estrogen receptor beta mediates gender differences in ischemia/reperfusion injury. J Mol Cell Cardiol 38:289–297

    Article  CAS  PubMed  Google Scholar 

  • García-Fernández C, Sánchez JA, Blanco G (2011) Characterization of the gilthead seabream (Sparus aurata L.) transferrin gene: Genomic structure, constitutive expression and SNP variation. Fish Shellfish Immunol 31:548–556

    PubMed  Google Scholar 

  • Gilliver SC, Ashworth JJ, Ashcroft GS (2008) The hormonal regulation of cutaneous wound healing. Clin Dermatol 25:56–62

    Article  Google Scholar 

  • Guerreiro PM, Fuentes J, Canario AV, Power DM (2002) Calcium balance in sea bream (Sparus aurata): the effect of oestradiol-17beta. J Endocrinol 173:377–385

    Article  CAS  PubMed  Google Scholar 

  • Harding KG, Moore K, Phillips TJ (2005) Wound chronicity and fibroblast senescence—implications for treatment. Int Wound J 2:364–368

    Article  PubMed  Google Scholar 

  • Harris HA, Albert LM, Leathurby Y, Malamas MS, Mewshaw RE, Miller CP, Kharode YP, Marzolf J, Komm BS, Winneker RC, Frail DE, Henderson RA, Zhu Y, Keith JC (2003) Evaluation of an estrogen receptor–b agonist in animal models of human disease. Endocrinology 144:4241–4249

    Article  CAS  PubMed  Google Scholar 

  • Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458

    Article  CAS  PubMed  Google Scholar 

  • Ibarz A, Costa R, Harrison AP, Power DM (2010a) Dietary keto-acid feed-back on pituitary activity in gilthead sea bream: effects of oral doses of AKG. A proteomic approach. Gen Comp Endocrinol 169:284–292

    Article  CAS  PubMed  Google Scholar 

  • Ibarz A, Martín-Pérez M, Blasco J, Bellido D, de Oliveira E, Fernández-Borràs J (2010b) Gilthead sea bream liver proteome altered at low temperatures by oxidative stress. Proteomics 10:963–975

    CAS  PubMed  Google Scholar 

  • Islamov RR, Hendricks WA, Jones RJ, Lyall GJ, Spanier NS, Murashov AK (2002) 17β-Estradiol stimulates regeneration of sciatic nerve in female mice. Brain Res 943:283–286

    Article  CAS  PubMed  Google Scholar 

  • Jänicke M, Renish B, Hammerschmidt M (2010) Zebrafish grainyhead-like1 is a common marker of different non-keratinocyte epidermal cell lineages, which segregate from each other in a Foxi3-dependent manner. Int J Dev Biol 54:837–850

    Article  PubMed Central  PubMed  Google Scholar 

  • Karpanen T, Schulte-Merker S (2011) Zebrafish provides a novel model for lymphatic vascular research. Methods Cell Biol 105:223–238

    Article  PubMed  Google Scholar 

  • Kvasnička F (2003) Proteomics: general strategies and application to nutritionally relevant proteins. J Chromatogr B 787:77–89

    Article  Google Scholar 

  • Lao HH, Sun YN, Yin ZX, Wang J, Chen C, Weng SP, He W, Guo CJ, Huang XD, Yu XQ, He JG (2008) Molecular cloning of two C1q-like cDNAs in mandarin fish Siniperca chuatsi. Vet Immunol Immunopathol 125:37–46

    Article  CAS  PubMed  Google Scholar 

  • LeGuellec D, Le, Morvan-Dubois G, Sire JY (2004) Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebrafish (Danio rerio). Int J Dev Biol 48:217–231

    Article  CAS  Google Scholar 

  • Long CJ, Roth MR, Tasheva ES, Funderburgh M, Smit R, Conrad GW, Funderburgh JL (2000) Fibroblast growth factor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro. J Biol Chem 275:13918–13923

    Article  CAS  PubMed  Google Scholar 

  • Mason G, Provero P, Vaira AM, Accotto GP (2002) Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol 2:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Marmiroli S, Bertacchini J, Beretti F, Cenni V, Guida M, De Pol A, Maraldi NM, Lattanzi G (2009) A-type lamins and signaling: the PI 3-kinase/Akt pathway moves forward. J Cell Physiol 220:553–561

    Article  CAS  PubMed  Google Scholar 

  • Martín-Pérez M, Fernández-Borràs J, Ibarz A, Millán-Cubillo A, Felip O, de Oliveira E, Blasco J (2012) New insights into fish swimming: a proteomic and isotopic approach in gilthead sea bream. J Proteome Res 11(7):3533–3547

    Article  PubMed  Google Scholar 

  • Martyniuk CJ, Alvarez S, McClung S, Villeneuve DL, Ankley GT, Denslow ND (2009) Quantitative proteomic profiles of androgen receptor signaling in the liver of fathead minnows (Pimephales promelas). J Proteome Res 8:2186–2200

    Article  CAS  PubMed  Google Scholar 

  • Michalopoulos GK (2007) Liver Regeneration. J Cell Physiol 213(2):286–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, Barasch J, Devarajan P (2004) Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 15:3073–3082

    Article  PubMed  Google Scholar 

  • Mollnes TE, Jokiranta TS, Truedsson L, Nilsson B, Rodriguez de Cordoba S, Kirschfink M (2007) Complement analysis in the 21st century. Mol Immunol 44:3838–3849

    Article  CAS  PubMed  Google Scholar 

  • Monnot MJ, Babin PJ, Poleo G, Andre M, Laforest L, Ballagny C, Akimenko MA (1999) Epidermal expression of apolipoprotein E gene during fin and scale development and fin regeneration in zebrafish. Dev Dyn 214:207–215

    Article  CAS  PubMed  Google Scholar 

  • Mukheriee A, Rotwein P (2009) Akt promotes BMP2-mediated osteoblast differentiation and bone development. J Cell Sci 122:716–726

    Article  Google Scholar 

  • Nakatani Y, Kawakami A, Takagy Y (2007) Cellular and molecular processes of regeneration, with special emphasis on fish fins. Dev, Growth Differ 49(2):145–154

    Article  Google Scholar 

  • Oba Y, Shimasaki Y, Oshima Y, Satone H, Kitano T, Nakao M, Kawabata S, Honjo T (2007) Purification and characterization of tributyltin-binding protein type 2 fromplasma of Japanese flounder, Paralichthys olivaceus. J Biochem 142:229–238

    Article  CAS  PubMed  Google Scholar 

  • Ogawa N, Ura K, Takagi Y (2010) Scale calcification in the goldfish (Carassius auratus) in vitro: histological and quantitative analysis. Fish Sci 76(2):189–198

    Article  CAS  Google Scholar 

  • Ohira Y, Shimizu M, Ura K, Takagi Y (2007) Scale regeneration and calcification in goldfish Carassius auratus: quantitative and morphological processes. Fish Sci 73:46–54

    Article  CAS  Google Scholar 

  • Pasch MC, van den Bosch NHA, Daha MR, Bos JD, Asghar SS (2000) Synthesis of complement components C3 and factor B in human keratinocytes is differentially regulated by cytokines. J Investig Dermatol 114:78–82

    Article  CAS  PubMed  Google Scholar 

  • Persson P, Johannsson SH, Takagi Y, Björnsson BT (1997) Estradiol-17β and nutritional status affect calcium balance, scale and bone resorption, and bone formation in rainbow trout, Oncorhynchus mykiss. J Comp Physiol B 167:468–473

    Article  CAS  Google Scholar 

  • Persson P, Takagi T, Björnsson BT (1995) Tartrate resistant acid phosphatise as a marker for scale resorption in rainbow trout, Oncorhynchus mykiss: effects of estradiol-17β treatment and refeeding. Fish Physiol Biochem 14:329–339

    Article  CAS  PubMed  Google Scholar 

  • Petreaca M, Martins-Green M (2011) Cell-ECM interactions in repair and regeneration. In: Atala A, Lanza R, Thomson JA, Nerem RM (eds) Principles of regenerative medicine, chapter 2. Academic Press-Elsevier, MA, USA, pp 19–65

  • Pinto PI, Estevao MD, Redruello B, Socorro SM, Canario AV, Power DM (2009) Immunohistochemical detection of estrogen receptors in fish scales. Gen Comp Endocrinol 160:19–29

    Article  CAS  PubMed  Google Scholar 

  • Pinto PI, Matsumura H, Thorne MA, Power DM, Terauchi R, Reinhardt R, Canário AV (2010) Gill transcriptome response to changes in environmental calcium in the green spotted puffer fish. BMC Genomics 11:476

    Article  PubMed Central  PubMed  Google Scholar 

  • Pinto PI, Passos AL, Martins RS, Power DM, Canario AV (2006a) Characterization of estrogen receptor bb in sea bream (Sparus auratus): phylogeny, ligand-binding, and comparative analysis of expression. Gen Comp Endocrinol 145:197–207

    Article  CAS  PubMed  Google Scholar 

  • Pinto PI, Singh PB, Condeça JB, Teodósio HR, Power DM, Canário AV (2006) ICI 182,780 has agonistic effects and synergizes with estradiol-17 beta in fish liver, but not in testis. Reprod Biol Immunol 27(4):67

    Google Scholar 

  • Quilhac A, Sire JY (1999) Spreading, proliferation, and differentiation of the epidermis after wounding a cichlid fish, Hemichromis bimaculatus. Anat Rec 254:435–451

    Article  CAS  PubMed  Google Scholar 

  • Rakers S, Gebert M, Uppalapati S, Meyer W, Maderson P, Sell AF, Kruse C, Paus R (2011) ‘Fish matters’: the relevance of fish skin biology to investigative dermatology. Exp Dermatol 19:313–324

    Article  Google Scholar 

  • Roberts RJ (2001) The anatomy and physiology of teleosts. In: Roberts RJ (ed) Fish pathology. Saunders, Philadelphia, pp 16–72

  • Rotllant J, Redruello B, Guerreiro PM, Fernandes H, Canario AV, Power DM (2005) Calcium mobilization from fish scales is mediated by parathyroid hormone related protein via the parathyroid hormone type 1 receptor. Regul Pept 132:33–40

    Article  CAS  PubMed  Google Scholar 

  • Sha Z, Xua P, Takano T, Liu H, Terhune J, Liu Z (2008) The warm temperature acclimation protein Wap65 as an immune response gene: Its duplicates are differentially regulated by temperature and bacterial infections. Mol Immunol 45(5):1458–1469

    Article  CAS  PubMed  Google Scholar 

  • Shanahan CM, Cary NR, Osbourn JK, Weissberg PL (1997) Identification Identification of osteoglycin as a component of the vascular matrix. Differential expression by vascular smooth muscle cells during neointima formation and in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 17:2437–2447

    Article  CAS  PubMed  Google Scholar 

  • Sire JY, Akimenko MA (2004) Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). Int J Dev Biol 48:233–247

    Article  CAS  PubMed  Google Scholar 

  • Sire JY, Allizard F, Babiar O, Bourguignon J, Quilhac A (1997) Scale development in zebrafish (Danio rerio). J Anat 190:545–561

    Article  PubMed Central  PubMed  Google Scholar 

  • Sire JY, Huysseune A (2003) Formation of skeletal and dental tissues in fish: a comparative and evolutionary approach. Biol Rev 78:219–249

    Article  PubMed  Google Scholar 

  • Sire JY, Huysseune A, Meunie FJ (1990) Osteoclasts in teleost fish: light- and electron-microscopical observations. Cell Tissue Res 1990(260):85–94

    Article  Google Scholar 

  • Sirover MA (1999) New insight into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophy Acta 1432:159–184

    CAS  Google Scholar 

  • Smith SL (1998) Shark complement: an assessment. Immunol Rev 166:67–78

    Article  CAS  PubMed  Google Scholar 

  • Socorro S, Power DM, Olsson PE, Canario AV (2000) Two estrogen receptors expressed in the teleost fish, Sparus aurata: cDNA cloning, characterization and tissue distribution. J Endocrinol 166:293–306

    Article  CAS  PubMed  Google Scholar 

  • Sola A, Weigert A, Jung M, Vinuesa E, Brecht K, Weis N, Brüne B, Borregaard N, Hotter G (2011) Sphingosine-1-phosphate signalling induces the production of Lcn-2 by macrophages to promote kidney regeneration. J Pathol 225:597–608

    Article  CAS  PubMed  Google Scholar 

  • Stafford JL, Belosevic M (2003) Transferrin and the immune response of fish: identification of a novel mechanism of macrophage activation. Dev Comp Immunol 27:539–554

    Article  CAS  PubMed  Google Scholar 

  • Stafford JL, Neuman NF, Belosevic M (2001) Products of proteolytic cleavage of transferrin induce nitric oxide response of goldfish macrophages. Dev Comp Immunol 25:101–115

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Ross NW, MacKinnon SL (2008) Comparison of antimicrobial activity in the epidermal mucus extracts of fish. Comp Biochem Physiol Part B 150:85–92

    Article  Google Scholar 

  • Tanaka K, Matsumoto E, Higashimaki Y, Katagiri T, Sugimoto T, Seino S, Kaji HJ (2012) Role of osteoglycin in the linkage between muscle and bone. Biol Chem 287(15):11616–11628

    Article  CAS  Google Scholar 

  • Tanzer L, Sengelaub DR, Jones KJ (1999) Estrogen receptor expression in the facial nucleus of adult hamsters: does axotomy recapitulate Smith for assistance in image analysis and Dan Whitehead development? J Neurobiol 39:438–446

    Article  CAS  PubMed  Google Scholar 

  • Tasheva ES, Koester A, Paulsen AQ, Garrett AS, Boyl DL, Davidson HJ, Song M, Fox N, Conrad G (2002) Mimecan/osteoglycin-deficient mice have collagen fibril abnormalities. Mol Vis 8:407–415

    CAS  PubMed  Google Scholar 

  • Tingaud-Sequeira A, Forgue J, André M, Babin PJ (2006) Epidermal transient down-regulation of retinol-binding protein 4 and mirror expression of apolipoprotein Eb and estrogen receptor 2a during zebrafish fin and scale development. Dev Dyn 335:3071–3079

    Article  Google Scholar 

  • Tort L, Montero D, Robaina L, Hernández-Palacios H, Izquierdo MS (2002) Consistency of stress response to repeated handling in the gilthead sea bream Sparus aurata Linnaeus, 1758. Aquac Res 32:593–598

    Article  Google Scholar 

  • Tran KT, Griffith L, Wells A (2004) Extracellular matrix signaling through growth factor receptors during wound healing. Wound Repair Regen 12:262–268

    Article  PubMed  Google Scholar 

  • Velders M, Schleipen B, Fritzemeier KH, Zierau O, Diel P (2012) Selective estrogen receptor-β activation stimulates skeletal muscle growth and regeneration. FASEB J 26:1909–1920. doi: 10.1096/fj.11-194779

    Google Scholar 

  • Vieira FA, Gregório SF, Ferraresso S, Thorne MAS, Costa R, Milan M, Bargelloni L, Clark MC, Canario AVM, Power DM (2011) Skin healing and scale regeneration in fed and unfed sea bream. Sparus auratus. BMC Genomics 12:490

    Article  PubMed Central  PubMed  Google Scholar 

  • Vilhelmsson OT, Martin SAM, Médale F, Kaushik SJ, Houlihan DF (2004) Dietary plant protein substitution affects hepatic metabolism, in rainbow trout (Oncorhynchus mykiss). Br J Nutr 92:71–81

    Article  CAS  PubMed  Google Scholar 

  • Webb SE, Li WM, Miller AL (2008) Calcium signalling during the cleavage period of zebrafish development. Philos Trans R Soc B: Biol Sci 363:1363–1369

    Article  Google Scholar 

  • Witten PE, Hansen A, Hall BK (2001) Features of mono- and multinucleated bone resorbing cells of the zebrafish Danio rerio and their contribution to skeletal development, remodeling, and growth. J Morphol 250:197–207

    Article  CAS  PubMed  Google Scholar 

  • Yoshikubo H, Suzuki N, Takemura K, Hoso M, Yashima S, Iwamuro S, Takagi Y, Tabata MJ, Hattori A (2005) Osteoblastic activity and estrogenic response in the regenerating scale of goldfish, a good model of osteogenesis. Life Sci 76(23):2699–2709

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Antonia Òdena and Eliandre de Oliveira from the ‘Centre Científic i Tecnològic’ (CCIT-UB) for valuable help during proteomic analyses. This research was funded by an AQUAGENOME (SSP8, no. 044481) resource exchange grant and pluriannual funding to CCMAR from the Portuguese Science and Technology Foundation (FCT) and XRAq projects (Generalitat de Catalunya, Spain). AI was recipient of a research grant from the Spanish Government (Programa de Ayudas de Mobilidad José Castillejo). PP was recipient of a fellowship SFRH/BPD/25247/2005 (PP) from the Portuguese Foundation for Science and Technology (FCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Ibarz.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Additional Fig. 1

Multi-scatter plot of normalised volume (vol.%) spots from 2D-gels of skin proteome within each experimental condition: IC intact skin, Reg regenerated skin, E2 intact skin E2 treated, RegE2 regenerated skin E2 treated. Correlation coefficients (r) are indicated in each plot (DOC 99 kb) (DOC 99 kb)

Additional Table 1

(DOCX 27.1 kb)

Additional Table 2

(DOC 42.0 kb)

Additional Table 3

(DOCX 22.7 kb)

Additional Table 4

(DOCX 21.7 kb)

Additional Table 5

(DOCX 25.5 kb)

Additional Table 6

(DOCX 21.7 kb)

Additional Table 7

(DOC 40.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibarz, A., Pinto, P.I.S. & Power, D.M. Proteomic Approach to Skin Regeneration in a Marine Teleost: Modulation by Oestradiol-17β. Mar Biotechnol 15, 629–646 (2013). https://doi.org/10.1007/s10126-013-9513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-013-9513-4

Keywords

Navigation