Skip to main content
Log in

Molecular, cellular and histological changes in skin from a larval to an adult phenotype during bony fish metamorphosis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Developmental models for skin exist in terrestrial and amphibious vertebrates but there is a lack of information in aquatic vertebrates. We have analysed skin epidermal development of a bony fish (teleost), the most successful group of extant vertebrates. A specific epidermal type I keratin cDNA (hhKer1), which may be a bony-fish-specific adaptation associated with the divergence of skin development (scale formation) compared with other vertebrates, has been cloned and characterized. The expression of hhKer1 and collagen 1α1 in skin taken together with the presence or absence of keratin bundle-like structures have made it possible to distinguish between larval and adult epidermal cells during skin development. The use of a flatfish with a well-defined larval to juvenile transition as a model of skin development has revealed that epidermal larval basal cells differentiate directly to epidermal adult basal cells at the climax of metamorphosis. Moreover, hhKer1 expression is downregulated at the climax of metamorphosis and is inversely correlated with increasing thyroxin levels. We suggest that, whereas early mechanisms of skin development between aquatic and terrestrial vertebrates are conserved, later mechanisms diverge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alibardi L (2002) Immunocytochemical localisation of keratins, associated proteins and uptake of histidine in the epidermis of fish and amphibians. Acta Histochemica 104:297–310

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Attwood TK, Bradley P, Flower DR, Gaulton A, Maudling N, Mitchell AL, Moulton G, Nordle A, Paine K, Taylor P, Uddin A, Zygouri C (2003) PRINTS and its automatic supplement, prePRINTS. Nucleic Acids Res 31:400–402

    Article  PubMed  CAS  Google Scholar 

  • Bru C, Courcelle E, Carrere S, Beausse Y, Dalmar S, Kahn D (2005) The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res 33:D212–D215

    Article  PubMed  CAS  Google Scholar 

  • Chua KL, Lim TM (2000) Type I and II cytokeratin cDNAs from the zebrafish (Danio rerio) and expression patterns during early development. Differentiation 66:31–41

    Article  PubMed  CAS  Google Scholar 

  • Conrad M, Lemb K, Schubert T, Markl J (1998) Biochemical identification and tissue-specific expression patterns of keratins in the zebrafish Danio rerio. Cell Tissue Res 293:195–205

    Article  PubMed  CAS  Google Scholar 

  • Coulombe PA, Hutton E, Vassar R, Fuchs E (1991) A function for keratins and a common thread among different types of epidermolusis bullosa simplex diseases. J Cell Biol 115:1661-1674

    Article  PubMed  CAS  Google Scholar 

  • Dale BA, Holbrook KA, Kimball JR, Hoff M, Sun TT (1985) Expression of epidermal keratins and filaggrin during human fetal skin development. J Cell Biol 101:1257–1269

    Article  PubMed  CAS  Google Scholar 

  • de Jesus EG, Toledo JD, Simpas MS (1998) Thyroid hormones promote early metamorphosis in grouper (Epinephelus coioides) larvae. Gen Comp Endocrinol 112:10–16

    Article  PubMed  CAS  Google Scholar 

  • Einarsdóttir IE, Silva N, Power DM, Smáradóttir H, Bjornssona BT (2006) Thyroid and pituitary gland development from hatching through metamorphosis of a teleost flatfish, the Atlantic halibut. Anat Embryol 211:47–60

    Article  PubMed  Google Scholar 

  • Ellison TR, Mathisen PM, Miller L (1985) Developmental changes in keratin patterns during epidermal maturation. Dev Biol 112:329–337

    Article  PubMed  CAS  Google Scholar 

  • Fitch WM (1971) Rate of change of concomitantly variable codons. J Mol Evol 1:84–96

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 63:345–382

    PubMed  CAS  Google Scholar 

  • Hesse M, Magin TM, Weber K (2001) Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J Cell Sci 114:2569–2575

    PubMed  CAS  Google Scholar 

  • Hesse M, Zimek A, Weber K, Magin TM (2004) Comprehensive analysis of keratin gene clusters in humans and rodents. Eur J Cell Biol 83:19–26

    Article  PubMed  CAS  Google Scholar 

  • Hutton E, Paladini RD, Yu QC, Yen M, Coulombe PA, Fuchs E (1998) Functional differences between keratins of stratified and simple epithelia. J Cell Biol 143:487–499

    Article  PubMed  CAS  Google Scholar 

  • Imboden M, Goblet C, Kom H, Vriz S (1997) Cytokeratin 8 is a suitable epidermal marker during zebrafish development. C R Acad Sci III 320:689–700

    PubMed  CAS  Google Scholar 

  • Inui Y, Miwa S (1985) Thyroid-hormone induces metamorphosis of flounder larvae. Gen Comp Endocrinol 60:450–454

    Article  PubMed  CAS  Google Scholar 

  • Inui Y, Yamano K, Miwa S (1995) The role of thyroid hormone in tissue development in metamorphosing flounder. Aquaculture 135:87–98

    Article  CAS  Google Scholar 

  • Ishida Y, Suzuki K, Utoh R, Obara M, Yoshizato K (2003) Molecular identification of the skin transformation center of anuran larval skin using genes of Rana adult keratin (RAK) and SPARC as probes. Dev Growth Differ 45:515–526

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury J-M, Brunet F, Petit J-L, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, Berardinis V de, Cruaud C, Duprat S, Brottier P, Coutanceau J-P, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff J-N, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Jho SH, Radoja N, Im MJ, Tomic-Canic M (2001) Negative response elements in keratin genes mediate transcriptional repression and the cross-talk among nuclear receptors. J Biol Chem 276:45914–45920

    Article  PubMed  CAS  Google Scholar 

  • Jho SH, Vouthounis C, Lee B, Stojadinovic O, Im MJ, Brem H, Merchant A, Chau K, Tomic-Canic M (2005) The book of opposites: the role of the nuclear receptor co-regulators in the suppression of epidermal genes by retinoic acid and thyroid hormone receptors. J Invest Dermatol 124:1034–1043

    Article  PubMed  CAS  Google Scholar 

  • Jonas E, Sargent TD, Dawid IB (1985) Epidermal keratin gene expressed in embryos of Xenopus laevis. Proc Natl Acad Sci USA 82:5413–5417

    Article  PubMed  CAS  Google Scholar 

  • Kawai A, Ikeya J, Kinoshita T, Yoshizato K (1994) A three-step mechanism of action of thyroid hormone and mesenchyme in metamorphic changes in anuran larval skin. Dev Biol 166:477–488

    Article  PubMed  CAS  Google Scholar 

  • Kirfel J, Magin TM, Reichelt J (2003) Keratins: a structural scaffold with emerging functions. Cell Mol Life Sci 60:56–71

    Article  PubMed  CAS  Google Scholar 

  • Kouklis PD, Hutton E, Fuchs E (1994) Making a connection: direct binding between intermediate filaments and desmosomal proteins. J Cell Biol 127:1049–1060

    Article  PubMed  CAS  Google Scholar 

  • Krushna Padhi B, Akimenko M-A, Ekker M (2006) Independent expansion of the keratin gene family in teleostean fish and mammals: an insight from phylogenetic analysis and radiation hybrid mapping of keratin genes in zebrafish. Gene 368:37–45

    Article  PubMed  CAS  Google Scholar 

  • Le Guellec D, Morvan-Dubois G, Sire JY (2004) Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebrafish (Danio rerio). Int J Dev Biol 48:217–231

    Article  PubMed  Google Scholar 

  • Liu YW, Chan WK (2002) Thyroid hormones are important for embryonic to larval transitory phase in zebrafish. Differentiation 70:36–45

    Article  PubMed  CAS  Google Scholar 

  • Llewellyn L, Ramsurn VP, Sweeney GE, Wigham T, Power DM (1998) Expression of thyroid hormone receptor during early development of the sea bream (Sparus aurata). Ann N Y Acad Sci 839:610–611

    Article  CAS  Google Scholar 

  • Lloyd C, Yu QC, Cheng J, Turksen K, Degenstein L, Hutton E, Fuchs E (1995) The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14. J Cell Biol 129:1329–1344

    Article  PubMed  CAS  Google Scholar 

  • Martorana ML, Tawk M, Lapointe T, Barre N, Imboden M, Joulie C, Geraudie J, Vriz S (2001) Zebrafish keratin 8 is expressed at high levels in the epidermis of regenerating caudal fin. Int J Dev Biol 45:449–452

    PubMed  CAS  Google Scholar 

  • Masson P (1929) Some histological methods. Trichrome staining and their preliminary techniques. Bull Int Assoc Med 12:75

    Google Scholar 

  • Mathisen PM, Miller L (1987) Thyroid hormone induction of keratin genes: a two-step activation of gene expression during development. Genes Dev 1:1107–1117

    PubMed  CAS  Google Scholar 

  • Mathisen PM, Miller L (1989) Thyroid hormone induces constitutive keratin gene expression during Xenopus laevis development. Mol Cell Biol 9:1823–1831

    PubMed  CAS  Google Scholar 

  • Mering C von, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucliec Acids Res 33:D433–D437

    Article  Google Scholar 

  • Miyatani S, Winkles JA, Sargent TD, Dawid IB (1986) Stage-specific keratins in Xenopus laevis embryos and tadpoles: the XK81 gene family. J Cell Biol 103:1957–1965

    Article  PubMed  CAS  Google Scholar 

  • Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cell lines. Cell 31:11–24

    Article  PubMed  CAS  Google Scholar 

  • Murray HM, Hew CL, Fletcher GL (2003) Spatial expression patterns of skin-type antifreeze protein in winter flounder (Pseudopleuronectes americanus) epidermis following metamorphosis. J Morphol 257:78–86

    Article  PubMed  CAS  Google Scholar 

  • Nishida K, Honma Y, Dota A, Kawasaki S, Adachi W, Nakamura T, Quantock AJ, Hosotani H, Yamamoto S, Okada M, Shimomura Y, Kinoshita S (1997) Isolation and chromosomal localization of a cornea-specific human keratin 12 gene and detection of four mutations in meesmann corneal epithelial dystrophy. Am J Hum Genet 61:1268–1275

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa A, Shimizu-Nishikawa K, Miller L (1992) Spatial, temporal, and hormonal regulation of epidermal keratin expression during development of the frog, Xenopus laevis. Dev Biol 151:145–153

    Article  PubMed  CAS  Google Scholar 

  • Ottensen OH, Olafsen JA (1997) Ontogenetic development and composition of the mucous cells and the occurrence of saccular cells in the epidermis of Atlantic halibut. J Fish Biol 50:620–633

    Article  Google Scholar 

  • Pinky Mittal S, Yashpal M, Ojha J, Mittal AK (2004) Occurrence of keratinization in the structures associated with lips of a hill stream fish Garra lamta (Hamilton) (Cyprinidae, Cypriniformes). J Fish Biol 65:1165–1172

    Article  Google Scholar 

  • Power DM, Llewellyn L, Faustino M, Nowell MA, Bjornsson BT, Einarsdottir IE, Canario AVM, Sweeney GE (2001) Thyroid hormones in growth and development of fish. Comp Biochem Physiol C Toxicol Pharmacol 130:447–459

    Article  PubMed  CAS  Google Scholar 

  • Radoja N, Diaz DV, Minars TJ, Freedberg IM, Blumenberg M, Tomic-Canic M (1997) Specific organization of the negative response elements for retinoic acid and thyroid hormone receptors in keratin gene family. J Invest Dermatol 109:566–572

    Article  PubMed  CAS  Google Scholar 

  • Radoja N, Stojadinovic O, Waseem A, Tomic-Canic M, Milisavljevic V, Teebor S, Blumenberg M (2004) Thyroid hormones and gamma interferon specifically increase K15 keratin gene transcription. Mol Cell Biol 24:3168–3179

    Article  PubMed  CAS  Google Scholar 

  • Roberts RJ, Bell M, Young H (1973) Studies on the skin of plaice (Pleuronectes platessa L.). II. The development of larval plaice skin. J Fish Biol 5:103–108

    Article  Google Scholar 

  • Rosenberg M, RayChaudhury A, Shows TB, Le Beau MM, Fuchs E (1988) A group of type I keratin genes on human chromosome 17: characterization and expression. Mol Cell Biol 8:722–736

    PubMed  CAS  Google Scholar 

  • Saele O, Solbakkan JS, Watanabe K, Hamre K, Power D, Pittman K (2004) Staging of Atlantic halibut (Hippoglossus hippoglossus L.) from first feeding through metamorphosis, including cranial ossification independent of eye migration. Aquaculture 239:445–465

    Article  Google Scholar 

  • Schaffeld M, Lobbecke A, Lieb B, Markl J (1998) Tracing keratin evolution: catalog, expression patterns and primary structure of shark (Scyliorhinus stellaris) keratins. Eur J Cell Biol 77:69–80

    PubMed  CAS  Google Scholar 

  • Schaffeld M, Haberkamp M, Braziulis E, Lieb B, Markl J (2002a) Type II keratin cDNAs from the rainbow trout: implications for keratin evolution. Differentiation 70:292–299

    Article  PubMed  CAS  Google Scholar 

  • Schaffeld M, Hoffling S, Haberkamp M, Conrad M, Markl J (2002b) Type I keratin cDNAs from the rainbow trout: independent radiation of keratins in fish. Differentiation 70:282–291

    Article  PubMed  CAS  Google Scholar 

  • Schaffeld M, Knappe M, Hunzinger C, Markl J (2003) cDNA sequences of the authentic keratins 8 and 18 in zebrafish. Differentiation 71:73–82

    Article  PubMed  CAS  Google Scholar 

  • Schaffeld M, Hoffling S, Jurgen M (2004) Sequence, evolution and tissue expression patterns of an epidermal type I keratin from the shark Scyliorhinus stellaris. Eur J Cell Biol 83:359–368

    Article  PubMed  CAS  Google Scholar 

  • Schaffeld M, Bremer M, Hunzinger C, Markl J (2005) Evolution of tissue-specific keratins as deduced from novel cDNA sequences of the lungfish Protopterus aethiopicus. Eur J Cell Biol 84:363–377

    Article  PubMed  CAS  Google Scholar 

  • Schreiber A, Brown DD (2003) Tadpole skin dies autonomously in response to thyroid hormone at metamorphosis. Proc Natl Acad Sci USA 100:1769–1774

    Article  PubMed  CAS  Google Scholar 

  • Shimizu-Nishikawa K, Miller L (1991) Calcium regulation of epidermal cell differentiation in the frog Xenopus laevis. J Exp Zool 260:165–169

    Article  PubMed  CAS  Google Scholar 

  • Shimizu-Nishikawa K, Miller L (1992) Hormonal regulation of adult type keratin gene expression in larval epidermal cells of the frog Xenopus laevis. Differentiation 49:77–83

    Article  PubMed  CAS  Google Scholar 

  • Stevens A (1990) The haematoxylins. In: Bancroft JD, Stevens A (eds) Theory and practice of histological techniques. Churchill Livingstone, Edinburgh, pp 107–118

    Google Scholar 

  • Suzuki K, Sato K, Katsu K, Hayashita H, Bach Kristensen D, Yoshizato K (2001) Novel Rana keratin genes and their expression during larval to adult epidermal conversion in bullfrog tadpoles. Differentiation 68:44–54

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K-i, Utoh R, Kotani K, Obara M, Yoshizato K (2002) Lineage of anuran epidermal basal cells and their differentiation potential in relation to metamorphic skin remodeling. Dev Growth Differ 44:225–238

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL, Waddell PJ, Huelsenbeck JP, Foster PG, Lewis PO, Rogers JS (2001) Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst Biol 50:525–539

    Article  PubMed  CAS  Google Scholar 

  • Tagawa M, Miwa S, Inui Y, de Jesus EG, Hirano T (1990) Changes in thyroid-hormone concentrations during early development and metamorphosis of the flounder, Paralichthys olivaceus. Zool Sci 7:93–96

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tomic-Canic M, Sunjevaric I, Freedberg IM, Blumenberg M (1992) Identification of the retinoic acid and thyroid hormone receptor-responsive element in the human K14 keratin gene. J Invest Dermatol 99:842–847

    Article  PubMed  CAS  Google Scholar 

  • Tomic-Canic M, Day D, Samuels HH, Freedberg IM, Blumenberg M (1996a) Novel regulation of keratin gene expression by thyroid hormone and retinoid receptors. J Biol Chem 271:1416–1423

    Article  PubMed  CAS  Google Scholar 

  • Tomic-Canic M, Freedberg IM, Blumenberg M (1996b) Codominant regulation of keratin gene expression by cell surface receptors and nuclear receptors. Exp Cell Res 224:96–102

    Article  PubMed  CAS  Google Scholar 

  • Troyanovsky SM, Leube RE, Franke WW (1992) Characterization of the human gene encoding cytokeratin 17 and its expression pattern. Eur J Cell Biol 59:127–137

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Kobayashi H, Suzuki K, Kotani K, Yoshizato K (2001) New epidermal keratin genes from Xenopus laevis: hormonal and regional regulation of their expression during anuran skin metamorphosis. Biochim Biophys Acta 1517:339–350

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Tanaka R, Kobayashi H, Utoh R, Suzuki K, Obara M, Yoshizato K (2002) Metamorphosis-dependent transcriptional regulation of xak-c, a novel Xenopus type I keratin gene. Dev Dyn 225:561–570

    Article  PubMed  CAS  Google Scholar 

  • Wheelan SJ, Church DM, Ostell1 JM (2001) Spidey: a tool for mRNA-to-genomic alignments. Genome Res 11:1952–1957

    PubMed  CAS  Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez J-C, Williams KL, Appel RD, Hochstrasser DF (1998) Protein identification and analysis tools in the ExPASy server. In: Link AJ (ed) 2-D proteome analysis protocols. Humana Press, New Jersey http://www.genoscope.cns.fr/externe/tetranew/

  • Yamano K, Tagawa M, de Jesus EG, Hirano T, Miwa S, Inui Y (1991) Changes in whole-body concentrations of thyroid-hormones and cortisol in metamorphosing conger eel. J Comp Physiol B Biochem Syst Environ Physiol 161:371–375

    CAS  Google Scholar 

  • Yamano K, Araki K, Sekikawa K, Inui Y (1994) Cloning of thyroid hormone receptor genes expressed in metamorphosing flounder. Dev Genet 15:378–382

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Lazar MA (2000) The mechanism of action of thyroid hormones. Annu Rev Physiol 62:439–466

    Article  PubMed  CAS  Google Scholar 

  • Zimek A, Stick R, Weber K (2003) Genes coding for intermediate filament proteins: common features and unexpected differences in the genomes of humans and the teleost fish Fugu rubripes. J Cell Sci 116:2295–2302

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Heiddis Smáradóttir of Fiskeldi Eyjafjarðar, IS-600 Akureyri, Iceland, for collecting and providing the halibut samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah M. Power.

Additional information

This work was carried out within the project “Arrested development: The Molecular and Endocrine Basis of Flatfish Metamorphosis” (Q5RS-2002-01192) with financial support from the Commission of the European Communities. It does not necessarily reflect the Commission’s views and in no way anticipates its future policy in this area. This project was further supported by Pluriannual funding to CCMAR by the Portuguese Science and Technology Council. M.A. Campinho was sponsored by the Portuguese Ministry of Science (grant no. SFRH/BD/6133/2001).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campinho, M.A., Silva, N., Sweeney, G.E. et al. Molecular, cellular and histological changes in skin from a larval to an adult phenotype during bony fish metamorphosis. Cell Tissue Res 327, 267–284 (2007). https://doi.org/10.1007/s00441-006-0262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0262-9

Keywords

Navigation