Skip to main content

Advertisement

Log in

Real-time PCR Detection of Dinophysis Species in Irish Coastal Waters

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Diarrhetic shellfish toxin-producing Dinophysis species occur in Irish coastal waters throughout the year. Dinophysis acuta and Dinophysis acuminata are the most commonly occurring species and are responsible for the majority of closures of Irish mussel farms. This study describes the development of a qualitative real-time polymerase chain reaction (PCR) assay for identification of D. acuta and D. acuminata in Irish coastal waters. DNA sequence information for the D1-D2 region of the large ribosomal sub-unit (LSU) was obtained, following single-cell PCR of D. acuta and D. acuminata cells isolated from Irish coastal locations. PCR primers and hybridization probes, specific for the detection of D. acuta, were designed for real-time PCR on the LightCycler™. The LightCycler™ software melt curve analysis programme determined that D. acuta was identified by a melt-peak at 61°C, while D. acuminata cells produced a melt peak at 48°C. The limit of detection of the real-time PCR assay was determined to be one to ten plasmid copies of the LSU D1-D2 target region for both species and one to five D. acuminata cells. Lugol's preserved water samples were also tested with the assay. The real-time PCR assay identified Dinophysis species in 100% of samples found to contain Dinophysis species by light microscopy and had a greater than 90% correlation with light microscopy for identification of D. acuta and D. acuminata in the samples. The assay can identify and discriminate D. acuta and D. acuminata at low numbers in Irish waters and has the potential to add value to the Irish phytoplankton monitoring programme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn S, Kulis DM, Erdner DL, Anderson DM, Walt DR (2006) Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species. Appl Environ Microbiol 72:5742–5749

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Anon (2000) LightCycler operator's manual. Roche Molecular Biochemicals, Mannheim

    Google Scholar 

  • Asai R, Nakanishi K, Nakamura C, Ikebukuro K, Miyake J, Karube I (2003) A polymerase chain reaction-based ribosomal DNA detection technique using a surface plasmon resonance detector for a red tide causing microalga, Alexandrium affine. Phycol Res 51:118–125

    Article  CAS  Google Scholar 

  • Behrenfeld MJ, O'Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, And Boss ES (2006) Climate driven trends in contemporary ocean productivity. Nature 444:752–755

    Article  CAS  PubMed  Google Scholar 

  • Bornet B, Antoine E, Francoise S, Marcaillou-Le Baut C (2005) Development of sequence characterized amplified region markers from intersimple sequence repeat fingerprints for the molecular detection of toxic phytoplankton Alexandrium catenella (Dinophyceae) and Pseudo-nitzschia pseudodelicatissima (Bacillariophyceae) from French coastal waters. J Phycol 41:704–711

    Article  CAS  Google Scholar 

  • Bowers HA, Tengs T, Glasgow HB Jr, Burkholder JAM, Rublee PA, Oldach DW (2000) Development of real-time PCR assays for rapid detection of Pfiesteria piscicida and related dinoflagellates. Appl Environ Microbiol 66:4641–4648

    Article  CAS  PubMed  Google Scholar 

  • Browne R, Deegan B, O'Carroll T, Norman M, Ó'Cinnéide M (2007) Status of Irish Aquaculture, 2006. Marine Institute/Bord Iascaigh Mhara/Taighde Mara Teo, p 113

  • Coyne KJ, Handy SM, Demir E, Whereat EB, Hutrchins DA, Portune KJ, Doblin MA, Cary SC (2005) Improved quantitative real-time PCR assays for enumeration of harmful algal species in field samples using an exogenous DNA reference standard. Limnol Oceanogr Meth 3:381–391

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dybas CL (2006) On a collision course: ocean plankton and climate change. Bioscience 56:642–646

    Article  Google Scholar 

  • Edvardsen B, Shalchian-Tabrizi K, Jakobsen KS, Medlin LK, Dahl E, Brubak S, Paasche E (2003) Genetic variability and molecular phylogeny of Dinophysis species (Dinophyceae) from Norwegian waters inferred from single cell analysis of rDNA. J Phycol 39:395–408

    CAS  Google Scholar 

  • Evans KM, Bates SS, Medlin LK, Hayes PK (2004) Microsatellite marker development and genetic variation in the toxic marine diatom Pseudo-nitzschia multiseries (Bacillariophyceae). J Phycol 40:911–920

    Article  CAS  Google Scholar 

  • Galluzzi L, Penna A, Bertozzini E, Vila M, Garcés E, Magnani M (2004) Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a Dinoflagellate). Appl Environ Microbiol 70:1199–1206

    Article  CAS  PubMed  Google Scholar 

  • Godhe A, Cusack C, Pedersen J, Andersen P, Anderson DM, Bresnan E, Cembella A, Dahl E, Diercks S, Elbrächter M, Edler L, Galluzzi L, Gescher G, Gladstone M, Karlson B, Kulis D, LeGresley M, Lindahl O, Marin R, McDermott G, Medlin LK, Naustvoll L-J, Penna A, Töbe K (2007) Intercalibration of classical and molecular techniques for identification of Alexandrium fundyense (Dinophyceae) and estimation of cell densities. Harmful Algae 6:56–72

    Article  CAS  Google Scholar 

  • Gómez F (2008) Phytoplankton invasions: comment on the validity of categorizing the non-indigenous dinoflagellates and diatoms in European Seas. Mar Pollut Bull 56:620–628

    PubMed  Google Scholar 

  • Guillard RRL (1973) Methods for microflagellates and nanoplankton. In: Stein J (ed) Handbook of phycological methods. Culture methods and growth measurements. Cambridge University Press, NY, pp 69–85

    Google Scholar 

  • Hiney M (1999) The absolute requirement for predictive validation of non-culture based detection techniques. DNA based Molecular Diagnostic Techniques: research needs for standardization and validation of the detection of aquatic animal pathogens and diseases. Report on the Proceedings of the expert workshop on DNA-based Molecular Diagnostic Techniques, Bangkok, Thailand, 7–9 Feb 1999

  • Hoorfar J, Malorny B, Abdulmawjood A, Cook N, Wagner M, Fach P (2004) Practical considerations in design of internal amplification controls for diagnostic PCR assays. J Clin Microbiol 42:1863–1868

    Article  CAS  PubMed  Google Scholar 

  • Hosoi-Tanabe S, Sako Y (2005) Species-specific detection and quantification of toxic marine dinoflagellates Alexandrium tamarense and A. catenella by real-time PCR. Mar Biotechnol 7:506–514

    Article  CAS  PubMed  Google Scholar 

  • John U, Medlin LK, Groben R (2005) Development of specific rRNA probes to distinguish between geographic clades of Alexandrium tamarense species complex. J Plankton Res 27:199–204

    Article  CAS  Google Scholar 

  • Lassus P, Bardouil M, Truquet I, Le Baut C, Pierre MJ (1985) Dinophysis acuminata distribution and toxicity along the southern Brittany coast (France): correlation with hydrological parameters. In: Anderson DM, White AW, Baden GD (eds) Toxic Dinoflagellates. Elsevier, NY, pp 159–164

    Google Scholar 

  • Marcaillou C, Mondeguer F, Gentien P (2005) Contribution to toxicity assessment of Dinophysis acuminata (Dinophyceae). J Appl Phycol 17:155–160

    Article  CAS  Google Scholar 

  • Metfies K, Huljic S, Lange M, Medlin LK (2005) Electrochemical detection of the toxic dinoflagellate Alexandrium ostenfeldii with a DNA-biosensor. Biosens Bioelectron 20:1349–1357

    Article  CAS  PubMed  Google Scholar 

  • Miller P, Scholin C (1998) Identification and enumeration of cultured and wild Pseudo-nitzschia (Bacillariophycae) using species-specific LSU rRNA-targeted fluorescent probes and filter-based whole cell hybridization. J Phycol 34:371–382

    Article  CAS  Google Scholar 

  • Moorthi SD, Countway PD, Stauffer BA, Caron DA (2005) Use of quantitative real-time PCR to investigate the dynamics of the red tide dinoflagellate Lingulodinium polyedrum. Microb Ecol 52:136–150

    Article  Google Scholar 

  • Park MG, Kim S, Kim HS, Myung G, Kang YG, Yih W (2006) First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat Microb Ecol 45:101–106

    Article  Google Scholar 

  • Parsons A, Norman M, O'Carroll T, Ó'Cinnéide M (2005) Status of Irish Aquaculture, 2004. Marine Institute/Bord Iascaigh Mhara/Taighde Mara Teo, p 59

  • Penna A, Bertozzini E, Battocchi C, Galluzzi L, Giacobbe MG, Vila M, Garces E, Lugliè A, Magnani M (2007) Monitoring of HAB species in the Mediterranean Sea through molecular methods. J Plankton Res 29:19–38

    Article  CAS  Google Scholar 

  • Puel O, Galgani F, Dalet C, Lassus P (1998) Partial sequence of the 24S rRNA and polymerase chain reaction based assay for the toxic dinoflagellate Dinophysis acuminata. Can J Fish Aquat Sci 55:597–604

    Article  CAS  Google Scholar 

  • Saito K, Drgon T, Robledo JAF, Krupatkina DN, Vasta GR (2002) Characterization of the rRNA locus of Pfiesteria piscicida and the development of standard and quantitative PCR-based detection assays targeted to the nontranscribed spacer. Appl Environ Microbiol 68:5393–5407

    Article  Google Scholar 

  • Sako Y, Hosoi-Tanabe S, Uchida A (2004) Fluorescence in situ hybridisation using rRNA-targeted probes for simple and rapid identification of the toxic dinoflagellates Alexandrium tamarense and Alexandrium minutum. J Phycol 4:598–605

    Article  Google Scholar 

  • Scholin C, Miller P, Buck K, Chavez F (1997) Detection and quantification of Pseudo-nitzschia australis in cultured and natural populations using rRNA-targeted probes. Limnol Oceanogr 42:1265–1272

    Article  CAS  Google Scholar 

  • Shariff M, Soon S, Lee KL, Tan LT (1999). Practical problems with PCR detection in Asia: the importance of standardization. DNA based Molecular Diagnostic Techniques: research needs for standardization and validation of the detection of aquatic animal pathogens and diseases. Report on the Proceedings of the expert workshop on DNA-based Molecular Diagnostic Techniques, Bangkok, Thailand, 7–9 Feb 1999

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Zingone, A (2005). IOC taxonimic reference list of toxic plankton algae Dinoflagellates-order dinophysiales. http://www.bi.ku.dk/ioc/group2a.asp

Download references

Acknowledgements

The study was carried out as part of the PHYTOTEST project, funded by the National Development Plan (NDP) Marine Institute Strategic Research Program-Advanced Technologies (Project No: AT04/02/02). The authors would like to express gratitude to the FRS, Marine Laboratory, Scotland, for the provision of samples containing Dinophysis cells that were used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majella Maher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Marine Institute phytoplankton monitoring programme samples (25 ml) used in this study. Light microscopy results and real-time polymerase chain reaction assay results are included. a–lRefer to corresponding samples in Fig. 3 (DOC 96 kb)

Supplementary Table 2

Phytoplankton specificity panel assayed with the Dinophysis real-time polymerase chain reaction (PCR) assay. aDenotes phytoplankton species that were directly tested with the Dinophysis real-time PCR assay as single cell templates or DNA extracts of pure cultures. bDenotes phytoplankton species that were present in Marine Institute phytoplankton monitoring programme samples. These species were identified microscopically (DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavanagh, S., Brennan, C., O’Connor, L. et al. Real-time PCR Detection of Dinophysis Species in Irish Coastal Waters. Mar Biotechnol 12, 534–542 (2010). https://doi.org/10.1007/s10126-009-9238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-009-9238-6

Keywords

Navigation