Skip to main content

Advertisement

Log in

Translational Machinery of Senegalese Sole (Solea senegalensis Kaup) and Atlantic Halibut (Hippoglossus hippoglossus L.): Comparative Sequence Analysis of the Complete Set of 60S Ribosomal Proteins and their Expression

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Ribosomal proteins (RPs) comprise a large set of highly evolutionarily conserved proteins that are often over-represented in complementary DNA libraries. They have become very useful markers in comparative genomics, genome evolution, and phylogenetic studies across taxa. In this study, we report the sequences of the complete set of 60S RPs in Senegalese sole (Solea senegalensis) and Atlantic halibut (Hippoglossus hippoglossus), two commercially important flatfish species. Amino-acid sequence comparisons of the encoded proteins showed a high similarity both between these two flatfish species and with respect to other fish and human counterparts. Expressed sequence tag analysis revealed the existence of paralogous genes for RPL3, RPL7, RPL41, and RPLP2 in Atlantic halibut and RPL13a in Senegalese sole as well as RPL19 and RPL22 in both species. Phylogenetic analysis of paralogs revealed distinct evolutionary histories for each RP in agreement with three rounds of genome duplications and lineage-specific duplications during flatfish evolution. Steady-state transcript levels for RPL19 and RPL22 RPs were quantitated during larval development and in different tissues of sole and halibut using a real-time polymerase chain reaction approach. All paralogs were expressed ubiquitously although at different levels in different tissues. Most RP transcripts increased coordinately after larval first-feeding in both species but decreased progressively during the metamorphic process. In all cases, expression profiles and transcript levels of orthologous genes in Senegalese sole and Atlantic halibut were highly congruent. The genomic resources and knowledge developed in this survey will be useful for the study of Pleuronectiformes evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson SJ, Lauritsen JP, Hartman MG, Foushee AM, Lefebvre JM, Shinton SA, Gerhardt B, Hardy RR, Oravecz T, Wiest DL (2007) Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity 26:759–772

    Article  PubMed  CAS  Google Scholar 

  • Bai J, Solberg C, Fernandes JM, Johnston IA (2006) Profiling of maternal and developmental-stage specific mRNA transcripts in Atlantic halibut Hippoglossus hippoglossus. Gene 386:202–210

    Article  PubMed  CAS  Google Scholar 

  • Bao-Long B, Gui-Mei Y, Da-Ming R (2006) Apoptosis in the metamorphosis of Japanese flounder Paralichthys olivaceus. Acta Zool Sin 52:355–361

    Google Scholar 

  • Barakat A, Szick-Miranda K, Chang IF, Guyot R, Blanc G, Cooke R, Delseny M, Bailey-Serres J (2001) The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome. Plant Physiol 127:398–415

    Article  PubMed  CAS  Google Scholar 

  • Barthelemy RM, Chenuil A, Blanquart S, Casanova JP, Faure E (2007) Translational machinery of the chaetognath Spadella cephaloptera: a transcriptomic approach to the analysis of cytosolic ribosomal protein genes and their expression. BMC Evol Biol 7:146–162

    Article  PubMed  CAS  Google Scholar 

  • Berendzen PB, Dimmick WW (2002) Phylogenetic relationships of Pleuronectiformes based on molecular evidence. Copeia 3:642–652

    Article  Google Scholar 

  • Blomme T, Vandepoele K, de Bodt S, Simillion C, Maere S, Van de Peer Y (2006) The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol 7:R43

    Article  PubMed  CAS  Google Scholar 

  • Brochier C, Forterre P, Gribaldo S (2004) Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol 5:R17

    Article  PubMed  Google Scholar 

  • Brochier C, Forterre P, Gribaldo S (2005) An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol Biol 5:36–43

    Article  PubMed  CAS  Google Scholar 

  • Chapleau F (1993) Pleuronectiform relationships: a cladistic reassessment. Bull Mar Sci 52:516–540

    Google Scholar 

  • Chen FW, Davies JP, Ioannou YA (1998) Differential gene expression in apoptosis: identification of ribosomal protein 23K, a cell proliferation inhibitor. Mol Genet Metab 64:271–282

    Article  PubMed  CAS  Google Scholar 

  • Cooper JA, Chapleau F (1998) Monophyly and intrarelationships of the family Pleuronectidae (Pleuronectiformes), with a revised classification. Fish Bull 96:686–726

    Google Scholar 

  • Cujec TP, Tyler BM (1996) Nutritional and growth control of ribosomal protein mRNA and rRNA in Neurospora crassa. Nucleic Acids Res 24:943–950

    Article  PubMed  CAS  Google Scholar 

  • Dobbelstein M, Shenk T (1995) In vitro selection of RNA ligands for the ribosomal L22 protein associated with Epstein-Barr virus-expressed RNA by using randomized and cDNA-derived RNA libraries. J Virol 69:8027–8034

    PubMed  CAS  Google Scholar 

  • Douglas SE, Knickle LC, Kimball J, Reith ME (2007) Comprehensive EST analysis of Atlantic halibut (Hippoglossus hippoglossus), a commercially relevant aquaculture species. BMC Genomics 8:144–155

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Díaz C, Yúfera M, Cañavate JP, Moyano FJ, Alarcón FJ, Díaz M (2001) Growth and physiological changes during metamorphosis of Senegal sole reared in the laboratory. J Fish Biol 58:1–13

    Article  Google Scholar 

  • Froese R, Pauly D (2007) FishBase. World Wide Web electronic publication. http://www.fishbase.org, version. Cited January 2007

  • Haug T (1990) Biology of the Atlantic halibut, Hippoglossus hippoglossus (L. 1758). Adv Mar Biol 26:2–70

    Google Scholar 

  • He H, Sun Y (2007) Ribosomal protein S27L is a direct p53 target that regulates apoptosis. Oncogene 19:2707–2716

    Article  CAS  Google Scholar 

  • Helfman G, Collette B, Facey D (1997) The diversity of fishes. Blackwell, Malden, MA

    Google Scholar 

  • Hensley DA (1997) An overview of the systematics and biogeography of the flatfishes. J Sea Res 37:187–194

    Article  Google Scholar 

  • Hoekstra R, Groeneveld P, Van Verseveld HW, Stouthamer AH, Planta RJ (1994) Transcription regulation of ribosomal protein genes at different growth rates in continuous cultures of Kluyveromyces yeasts. Yeast 10:637–651

    Article  PubMed  CAS  Google Scholar 

  • Hoshino K (2001) Monophyly of the Citharidae (Pleuronectoidei: Pleuronectiformes: Teleostei) with considerations of pleuronectoid phylogeny. Ichthyol Res 48:391–404

    Article  Google Scholar 

  • Infante C, Catanese G, Manchado M (2004) Phylogenetic relationships among ten sole species (Soleidae, Pleuronectiformes) from the Gulf of Cadiz (Spain) based on mitochondrial DNA sequences. Mar Biotechnol (NY) 6:612–624

    Article  CAS  Google Scholar 

  • Karsi A, Patterson A, Feng J, Liu Z (2002) Translational machinery of channel catfish: I. A transcriptomic approach to the analysis of 32 40S ribosomal protein genes and their expression. Gene 291:177–186

    Article  PubMed  CAS  Google Scholar 

  • Koski LB, Gray MW, Lang BF, Burger G (2005) AutoFACT: an automatic functional annotation and classification tool. BMC Bioinformatics 6:151

    Article  PubMed  CAS  Google Scholar 

  • Koyama Y, Katagiri S, Hanai S, Uchida K, Miwa M (1999) Poly(ADP-ribose) polymerase interacts with novel Drosophila ribosomal proteins, L22 and L23a, with unique histone-like amino-terminal extensions. Gene 226:339–345

    Article  PubMed  CAS  Google Scholar 

  • Le S, Sternglanz R, Greider CW (2000) Identification of two RNA-binding proteins associated with human telomerase RNA. Mol Biol Cell 11:999–1010

    PubMed  CAS  Google Scholar 

  • Leopardi R, Roizman B (1996) Functional interaction and colocalization of the herpes simplex virus 1 major regulatory protein ICP4 with EAP, a nucleolar-ribosomal protein. Proc Natl Acad Sci U S A 93:4572–4576

    Article  PubMed  CAS  Google Scholar 

  • Leopardi R, Ward PL, Ogle WO, Roizman B (1997) Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes containing EAP, ICP4, RNA polymerase II, and viral DNA requires posttranslational modification by the U(L)13 protein kinase. J Virol 71:1133–1139

    PubMed  CAS  Google Scholar 

  • Linney E, Dobbs-McAuliffe B, Sajadi H, Malek RL (2004) Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol C Toxicol Pharmacol 138:351–362

    Article  PubMed  CAS  Google Scholar 

  • Lo J, Lee S, Xu M, Liu F, Ruan H, Eun A, He Y, Ma W, Wang W, Wen Z, Peng J (2003) 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res 13:455–466

    Article  PubMed  Google Scholar 

  • Manchado M, Infante C, Asensio E, Cañavate JP, Douglas SE (2007) Comparative sequence analysis of the complete set of 40S ribosomal proteins in the Senegalese sole (Solea senegalensis Kaup) and Atlantic halibut (Hippoglossus hippoglossus L.) (Teleostei: Pleuronectiformes): phylogeny and tissue- and development-specific expression. BMC Evol Biol 7:107–119

    Article  PubMed  CAS  Google Scholar 

  • Manchado M, Infante C, Asensio E, Planas JV, Cañavate JP (2008) Thyroid hormones down-regulate thyrotropin beta subunit and thyroglobulin during metamorphosis in the flatfish Senegalese sole (Solea senegalensis Kaup). Gen Comp Endocrinol 155:447–455

    Article  PubMed  CAS  Google Scholar 

  • Marygold SJ, Roote J, Reuter G, Lambertsson A, Ashburner M, Millburn GH, Harrison PM, Yu Z, Kenmochi N, Kaufman TC, Leevers SJ, Cook KR (2007) The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol 8:R216

    Article  PubMed  CAS  Google Scholar 

  • Mathavan S, Lee SG, Mak A, Miller LD, Murthy KR, Govindarajan KR, Tong Y, Wu YL, Lam SH, Yang H, Ruan Y, Korzh V, Gong Z, Liu ET, Lufkin T (2005) Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet 1:260–276

    Article  PubMed  CAS  Google Scholar 

  • Mazumder B, Sampath P, Seshadri V, Maitra RK, DiCorleto PE, Fox PL (2003) Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control. Cell 115:187–198

    Article  PubMed  CAS  Google Scholar 

  • Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27:937–945

    Article  PubMed  CAS  Google Scholar 

  • Milne AN, Mak WW, Wong JT (1975) Variation of ribosomal proteins with bacterial growth rate. J Bacteriol 122:89–92

    PubMed  CAS  Google Scholar 

  • Nakao A, Yoshihama M, Kenmochi N (2004) RPG: the ribosomal protein gene database. Nucleic Acids Res 32:D168–D170

    Article  PubMed  CAS  Google Scholar 

  • Naora H (1999) Involvement of ribosomal proteins in regulating cell growth and apoptosis: translational modulation or recruitment for extraribosomal activity? Immunol Cell Biol 77:197–205

    Article  PubMed  CAS  Google Scholar 

  • Naora H, Takai I, Adachi M, Naora H (1998) Altered cellular responses by varying expression of a ribosomal protein gene: sequential coordination of enhancement and suppression of ribosomal protein S3a gene expression induces apoptosis. J Cell Biol 141:741–753

    Article  PubMed  CAS  Google Scholar 

  • Nelson JS (1994) Fishes of the world. Wiley, New York

    Google Scholar 

  • Neumann F, Krawinkel U (1997) Constitutive expression of human ribosomal protein L7 arrests the cell cycle in G1 and induces apoptosis in Jurkat T-lymphoma cells. Exp Cell Res 230:252–261

    Article  PubMed  CAS  Google Scholar 

  • Neumann F, Hemmerich P, von Mikecz A, Peter HH, Krawinkel U (1995) Human ribosomal protein L7 inhibits cell-free translation in reticulocyte lysates and affects the expression of nuclear proteins upon stable transfection into Jurkat T-lymphoma cells. Nucleic Acids Res 23:195–202

    Article  PubMed  CAS  Google Scholar 

  • Pardo BG, Machordom A, Foresti F, Porto-Foresti F, Azevedo MFC, Bañón R, Sánchez L, Martínez P (2005) Phylogenetic analysis of flatfish (Order Pleuronectiformes) based on mitochondrial 16S rDNA sequences. Sci Mar 69:531–543

    Article  CAS  Google Scholar 

  • Patterson A, Karsi A, Feng J, Liu Z (2003) Translational machinery of channel catfish: II. Complementary DNA and expression of the complete set of 47 60S ribosomal proteins. Gene 305:151–160

    Article  PubMed  CAS  Google Scholar 

  • Perina D, Cetkovic H, Harcet M, Premzl M, Lukic-Bilela L, Muller WE, Gamulin V (2006) The complete set of ribosomal proteins from the marine sponge Suberites domuncula. Gene 366:275–284

    Article  PubMed  CAS  Google Scholar 

  • Planta RJ, Mager WH (1998) The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast 14:471–477

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Rastogi S, Liberles DA (2005) Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol Biol 5:28–35

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Byrnes JK, Pan R, Zhang P, Li WH (2006) Role of positive selection in the retention of duplicate genes in mammalian genomes. Proc Natl Acad Sci U S A 103:2232–2236

    Article  PubMed  CAS  Google Scholar 

  • Solbakken JS, Norberg B, Watanabe K, Pittman K (1999) Thyroxine as a mediator of metamorphosis of Atlantic halibut, Hippoglossus hippoglossus. Environ Biol Fishes 56:53–65

    Article  Google Scholar 

  • Steinke D, Hoegg S, Brinkmann H, Meyer A (2006) Three rounds (1R/2R/3R) of genome duplications and the evolution of the glycolytic pathway in vertebrates. BMC Biol 4:16–30

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using Parsimony (*and other methods), version, 4th edn. Sinauer, Sunderland, MA

    Google Scholar 

  • Teeling H, Gloeckner FO (2006) RibAlign: a software tool and database for eubacterial phylogeny based on concatenated ribosomal protein subunits. BMC Bioinformatics 7:66–72

    Article  PubMed  CAS  Google Scholar 

  • Toczyski DP, Steitz JA (1991) EAP, a highly conserved cellular protein associated with Epstein-Barr virus small RNAs (EBERs). EMBO J 10:459–466

    PubMed  CAS  Google Scholar 

  • Uechi T, Nakajima Y, Nakao A, Torihara H, Chakraborty A, Inoue K, Kenmochi N (2006) Ribosomal protein gene knockdown causes developmental defects in zebrafish. PLoS ONE 1:e37

    Article  PubMed  CAS  Google Scholar 

  • Veuthey AL, Bittar G (1998) Phylogenetic relationships of fungi, plantae, and animalia inferred from homologous comparison of ribosomal proteins. J Mol Evol 47:81–92

    Article  PubMed  CAS  Google Scholar 

  • Waldron C, Jund R, Lacroute F (1977) Evidence for a high proportion of inactive ribosomes in slow-growing yeast cells. Biochem J 168:409–415

    PubMed  CAS  Google Scholar 

  • Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440

    Article  PubMed  CAS  Google Scholar 

  • Wood J, Frederickson RM, Fields S, Patel AH (2001) Hepatitis C virus 3¢X region interacts with human ribosomal proteins. J Virol 75:1348–1358

    Article  PubMed  CAS  Google Scholar 

  • Wool IG, Chan YL, Glück A (1995) Structure and evolution of mammalian ribosomal proteins. Biochem Cell Biol 73:933–947

    Article  PubMed  CAS  Google Scholar 

  • Woolford JL Jr, Warner JR (1991) The ribosome and its synthesis. In: Broach JR, Pringle JR, Jones EW (eds) The molecular biology and cellular biology of the yeast saccharomyces cerevisiae. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 587–626

    Google Scholar 

  • Zhang Z, Harrison P, Gerstein M (2002) Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome. Genome Res 12:1466–1482

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by Pleurogene project funded by the Genome Canada-Genoma España joint program. Sequencing by the Atlantic Genome Centre (www.tagc.ca), Halifax, Nova Scotia, Canada a partnership between Genome Atlantic and the National Research Council of Canada Institute for Marine Biosciences, is gratefully acknowledged. We thank Dr. Kelly Soanes (IMB) for critical review of this manuscript. This is NRC publication number 2008-42783. MM is the recipient of a research contract from INIA (Spanish Ministry of Science and Technology) cofunded by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Manchado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuoka, M.P., Infante, C., Reith, M. et al. Translational Machinery of Senegalese Sole (Solea senegalensis Kaup) and Atlantic Halibut (Hippoglossus hippoglossus L.): Comparative Sequence Analysis of the Complete Set of 60S Ribosomal Proteins and their Expression. Mar Biotechnol 10, 676–691 (2008). https://doi.org/10.1007/s10126-008-9104-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9104-y

Keywords

Navigation