Skip to main content

For Three Billion Years, Microorganisms Were the Only Inhabitants of the Earth

  • Chapter
  • First Online:
Environmental Microbiology: Fundamentals and Applications

Abstract

Microorganisms were the sole inhabitants of our planet for almost 3 billion years. They have survived the intense geological upheavals that have marked the history of the Earth. They profoundly shaped their environment, thus participating in a true co-evolution between the biosphere and the geosphere. Through their activity, they also created favourable conditions for the emergence of multicellular aerobic organisms (particularly with an intense production of oxygen released into the atmosphere).

Among past microorganisms, LUCA occupied a central position in the evolutionary history of life. The possible origin and the large uncertainties about the nature of LUCA are discussed: where and when did LUCA live? Was it a hyperthermophilic, thermophilic or mesophilic organism? How did its genome look like?

Scenarios and hypotheses regarding the emergence and the relationships of the three domains of life – Archaea, Bacteria and Eucarya – as well as the transition from a prokaryotic to eukaryotic cell organisation are discussed in the light of the most recent data. Possible major steps in the evolution of microorganisms are deduced from genomic investigations and from the geological record (fossils, isotopic ratios, biomarkers). Although the early steps of microbial metabolic evolution are still hotly debated, it is possible to speculate on the occurrence of the first living entities, from the primordial metabolisms to the advent of photosynthesis.

Coordinator

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–718

    Article  CAS  PubMed  Google Scholar 

  • Beatty JT et al (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci U S A 102:9306–9310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boussau B, Blanquart S, Necsulea A, Lartillot N, Gouy M (2008) Parallel adaptations to high temperature in the Archaean eon. Nature 456:942–945

    Article  CAS  PubMed  Google Scholar 

  • Brasier MD et al (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81

    Article  PubMed  Google Scholar 

  • Brasier MD, Mc Loughlin N, Green O, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Philos Trans R Soc Lond B Biol Sci 361:887–902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brinkmann H, Philippe H (2005) The universal tree of life: from simple to complex or from complex to simple. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology: vol I. Advances in astrobiology and biogeophysics. Springer, pp 617–656

    Google Scholar 

  • Brochier C, Philippe H (2002) A non-hyperthermophilic ancestor for bacteria. Nature 417:244

    Article  CAS  PubMed  Google Scholar 

  • Brocks JJ, Summons RE (2003) Sedimentary hydrocarbons, biomarkers for early life. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. New-Haven, Elsevier, pp 63–115

    Chapter  Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Brocks JJ, Buick R, Summons RE, Logan GA (2003) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67:4321–4335

    Article  CAS  Google Scholar 

  • Butterfield NJ (2000) Bangiomorpha pubescens n.gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of Eukaryotes. Paleobiology 26:386–404

    Article  Google Scholar 

  • Byerly GR, Lowe DR, Walsh MM (1986) Stromatolites from the 3300–3500 Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 319:489–491

    Article  CAS  Google Scholar 

  • Canfield DE, Rosing MT, Bjerrum C (2006) Early anaerobic metabolisms. Philos Trans R Soc Lond B Biol Sci 361:1819–1834; discussion 1835–1816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castresana J (2004) Evolution and phylogenetic analysis of respiration. In: Zannoni D (ed) Respiration in archaea and bacteria. Kluwer Academic Publishers, Dorderecht/Boston/London, pp 1–14

    Google Scholar 

  • Cavalier-Smith T (2002) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76

    CAS  PubMed  Google Scholar 

  • Courties C et al (1994) Smallest eukaryotic organism. Nature 370:255

    Article  Google Scholar 

  • De Duve C (1995) Vital dust: life as a cosmic imperative. Basic Books, New York

    Google Scholar 

  • De Duve C (2002) À l’écoute du vivant. Odile Jacob, Paris

    Google Scholar 

  • Ehrlich HL (2002) The origin of life and its early history. In: Geomicrobiology. M. Dekker, Inc, New York/Basel, pp 21–48

    Google Scholar 

  • El Albani A et al (2010) Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466:100–104

    Article  PubMed  Google Scholar 

  • Forterre P (2002) The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5:525–532

    Article  CAS  PubMed  Google Scholar 

  • Forterre P, Bouthier De La Tour C, Philippe H, Duguet M (2000) Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from archaea to bacteria. Trends Genet 16:152–154

    Article  CAS  PubMed  Google Scholar 

  • Forterre P, Gribaldo S, Brochier C (2005) Luca: the last universal common ancestor. Med Sci 21:860–865

    Google Scholar 

  • Galtier N, Tourasse N, Gouy M (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283:220–221

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ruiz JM, Hyde ST, Carnerup AM, Christy AG, van Kranendonk MJ, Welham NJ (2003) Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302:1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Gaucher EA, Thomson JM, Burgan MF, Benner SA (2003) Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425:285–288

    Article  CAS  PubMed  Google Scholar 

  • Gogarten JP et al (1989) Evolution of the vacuolar H + − ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci U S A 86:6661–6665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grassineau NV et al (2001) Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million-year-old rocks of the Belingwe belt, Zimbabwe. Proc Roy Soc Lond B 268:113–119

    Article  CAS  Google Scholar 

  • Han TM, Runnegar B (1992) Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. Science 257:232–235

    Article  CAS  PubMed  Google Scholar 

  • Hoefs J (2004) Stable isotopes geochemistry. 5th completely revised, updated, and enlarged edition. Springer, Berlin, 244 p

    Google Scholar 

  • Hofmann HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol Soc A Bull 111:1256–1262

    Article  Google Scholar 

  • Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci U S A 86:9355–9359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69

    Article  CAS  PubMed  Google Scholar 

  • Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938

    Article  CAS  PubMed  Google Scholar 

  • Kasting JF, Howard MT (2006) Atmospheric composition and climate on the early Earth. Philos Trans R Soc Lond B Biol Sci 361:1733–1741; discussion 1741–1732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knauth LP, Lowe DR (2003) High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup. S Afr Geol Soc Am Bull 115:566–580

    Article  CAS  Google Scholar 

  • Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc Lond B Biol Sci 361:1023–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1:127–136

    Article  CAS  PubMed  Google Scholar 

  • Krumbein WE (1983) Stromatolites, the challenge of a term in space and time. Dev Precambrian Geol 7:385–423

    Article  Google Scholar 

  • Lenton T, Watson A (2011) Revolutions that made the Earth. Oxford University Press, Oxford

    Book  Google Scholar 

  • Lombard J, López-García P, Moreira D (2012) The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol 10:507–515

    CAS  PubMed  Google Scholar 

  • López-García P, Moreira D (2006) Selective forces for the origin of the eukaryotic nucleus. Bioessays 28:525–533

    Article  PubMed  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, Yale

    Google Scholar 

  • Martin W, Muller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  CAS  PubMed  Google Scholar 

  • Maynard Smith J, Szathmáry E (2000) The origins of life. Oxford University Press, Oxford

    Google Scholar 

  • McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26

    CAS  Google Scholar 

  • Moreira D, López-García P (1998) Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol 47:517–530

    Article  CAS  PubMed  Google Scholar 

  • Mulkidjanian AY et al (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 103:13126–13131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci U S A 93:10268–10273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

    Article  CAS  PubMed  Google Scholar 

  • Nealson KH, Rye R (2003) Evolution of metabolism. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. New-Haven, Elsevier, pp 41–61

    Chapter  Google Scholar 

  • Nelson DL, Cox MM (2000) Lehninger principles of biochemistry. Worth Publishers, New York

    Google Scholar 

  • Nisbet EG, Fowler CMR (2003) The early history of life. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. New-Haven, Elsevier, pp 1–39

    Chapter  Google Scholar 

  • Nisbet EG, Cann JR, Lee van Dover C (1995) Origins of photosynthesis. Nature 373:479–480

    Article  CAS  Google Scholar 

  • Ohmoto H (2004) The Archaean atmosphere, hydrosphere and biosphere. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catueanu O (eds) The Precambrian earth: tempos and events. Elsevier, Amsterdam, pp 361–388

    Google Scholar 

  • Ourisson G, Nakatani Y (1994) The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Curr Biol 1:11–23

    CAS  Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2007) The biomarker guide, vol 1–2. Cambridge University Press, Cambridge

    Google Scholar 

  • Philippot P, Van Zuilen M, Lepot K, Thomazo C, Farquhar J, Van Kranendonk MJ (2007) Early archaean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Rosing MT (1999) 13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west Greenland. Science 283:674–676

    Article  CAS  PubMed  Google Scholar 

  • Sadava D, Heller HC, Orians GH, Purves WK, Hillis DM (2007) Life: the science of biology, 8th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Saraste M, Castresana J (1994) Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett 341:1–4

    Article  CAS  PubMed  Google Scholar 

  • Schidlowski M (1993) The initiation of biological processes on Earth. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York/London, pp 693–695

    Google Scholar 

  • Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res 106:117–134

    Article  CAS  Google Scholar 

  • Schopf JW (1993) Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76

    Article  CAS  PubMed  Google Scholar 

  • Schulz HN, Brinkhoff T, Ferdelman TG, Hernández Mariné M, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495

    Article  CAS  PubMed  Google Scholar 

  • Schwartz RM, Dayhoff MO (1978) Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science 199:395–403

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Buick R (2004) The antiquity of microbial sulfate reduction. Earth Sci Rev 64:243–272

    Article  CAS  Google Scholar 

  • Shiflett AM, Johnson PJ (2010) Mitochondrion-related organelles in eukaryotic protists. Annu Rev Microbiol 64:409–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc Lond B Biol Sci 361:1837–1843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugitani K, Grey K, Nagoaka T, Mimura K, Walter M (2009) Taxonomy and biogenicity of Archaean spheroidal microfossils (ca. 3.0 Ga) from the Mount Goldsworthy-Mount Grant area in the northwestern Pilbara Craton, Western Australia. Precambrian Res 173:50–59

    Article  CAS  Google Scholar 

  • Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    Article  CAS  PubMed  Google Scholar 

  • Van den Boorn S, Van Bergen MJ, Nijman W, Vroon PZ (2007) Dual role of seawater and hydrothermal fluids in Early Archean chert formation: evidence from silicon isotopes. Geology 35:939–942

    Article  Google Scholar 

  • Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(iii) reduction on early Earth. Nature 395:65–67

    Article  CAS  PubMed  Google Scholar 

  • Volkman JK (2005) Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Org Geochem 36:139–159

    Article  CAS  Google Scholar 

  • Westall F (2005) The geological context for the origin of life and the mineral signatures of fossil life. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology: vol I. Advances in astrobiology and biogeophysics. Springer, pp 195–226

    Google Scholar 

  • Westall F (2011) Early life. In: Gargaud M et al (eds) Origins of life, an astrobiology perspective. Cambridge University Press, Cambridge, pp 391–413

    Chapter  Google Scholar 

  • Westall F, Cavalazzi B (2011) Biosignatures in rocks. In: Thiel V, Reitner J (eds) Encyclopedia of geobiology. Springer, Berlin, pp 189–201

    Chapter  Google Scholar 

  • Westall F, Folk RL (2003) Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua Greenstone Belt: implications for the search for life in ancient rocks. Precambrian Res 126:313–330

    Article  CAS  Google Scholar 

  • Westall F, de Ronde CEJ, Southam G, Grassineau N, Colas M, Cockell C, Lammer H (2006a) Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philos Trans R Soc Lond B Biol Sci 361:1857–1875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Westall F et al (2006b) The 3.466 Ga “Kitty’s Gap Chert”, an early Archean microbial ecosystem. Geol Soc America, special paper 405:105–131

    Google Scholar 

  • Westall F, Foucher F, Cavalazzi B, de Vries ST, Nijman W, Pearson V, Watson J, Verchovsky A, Wright I, Rouzaud JN, Marchesini D, Anne S (2011a) Early life on Earth and Mars: a case study from ~3.5 Ga-old rocks from the Pilbara, Australia. Planet Space Sci 59:1093–1106

    Article  CAS  Google Scholar 

  • Westall F et al (2011b) Implications of in situ calcification for photosynthesis in a ~3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa. Earth Planet Sci Lett 310:468–479

    Article  CAS  Google Scholar 

  • Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian trachipleistophora hominis. Nature 418:865–869

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bertrand, JC., Brochier-Armanet, C., Gouy, M., Westall, F. (2015). For Three Billion Years, Microorganisms Were the Only Inhabitants of the Earth. In: Bertrand, JC., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Sime-Ngando, T. (eds) Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9118-2_4

Download citation

Publish with us

Policies and ethics