Skip to main content
Log in

Hypercrosslinking Polymers Fabricated from Divinyl Benzene via Friedel-Crafts Addition Polymerization

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Microporous organic polymers with high surface area are widely used in many applications. Among them, hypercrosslinked polymers have been extensively concerned because of their simple processes and low-cost reagents. However, due to most state-of-the-art strategies for HCPs based on condensation reactions, the release of small molecules such as hydrochloric acid and methanol involved in such strategies brings about new hazards to environment. Herein, we propose a method of fabrication of hypercrosslinked polymers via self-addition polymerization of divinyl benzene and its crosslinking with polar aromatic molecules. The hypercrosslinked polyDVB-based products are demonstrated by Friedel-Crafts addition reaction of double bonds on DVB that can connect adjacent phenyl rings of aromatic molecules to form the crosslinked networks. The HCPDVB-CB obtained in 1-chlorobutane as solvent has a high micropore content and displays high surface area up to 931 m2/g. Following this finding, DVB is used as a novel external crosslinker for knitting polar aromatic molecules. When L-phenylalanine and bisphenol A are used as the aromatic units, the obtained HCP(Phe-DVB) and HCP(BPA-DVB) could reach surface area of 612 and 471 m2/g, and have hydrogen uptake of 0.62 wt% and 0.58 wt% at 77 K and 1.13 bar by comparison with HCPDVB-CB having hydrogen uptake of 0.30 wt%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, J. Y.; Yuan, S. S.; Wang, J.; Zhang, Y. T.; Tian, M. M.; Bruggen, B. V. Microporous organic polymer-based membranes for ultrafast molecular separations. Prog. Polym. Sci. 2020, 110, 101308.

    Article  CAS  Google Scholar 

  2. Du, M. Q.; Peng, Y. Z.; Ma, Y. C.; Yang, L.; Zhou, Y. L.; Zeng, F. K.; Wang, X. K.; Song, M. L.; Chang, G. J. Selective carbon dioxide capture in antifouling indole-based microporous organic polymers. Chinese J. Polym. Sci. 2020, 38, 187–194.

    Article  CAS  Google Scholar 

  3. Das, S.; Heasman, P.; Ben, T.; Qiu, S. L. Porous organic materials: strategic design and structure-function correlation. Chem. Rev. 2017, 117, 1515–1563.

    Article  CAS  PubMed  Google Scholar 

  4. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

    Article  PubMed  Google Scholar 

  5. Hu, X. L.; Li, H. G.; Tan, B. E. COFs-based porous materials for photocatalytic applications. Chinese J. Polym. Sci. 2020, 38, 673–684.

    Article  CAS  Google Scholar 

  6. Wang, M. Y.; Zhang, Q. J.; Shen, Q. Q.; Li, Q. Y.; Ren, S. J. Truxene-based conjugated microporous polymers via different synthetic methods. Chinese J. Polym. Sci. 2020, 38, 151–157.

    Article  CAS  Google Scholar 

  7. Lei, Y.; Tian, Z. Y.; Sun, H. X.; Liu, F.; Zhu, Z. Q.; Liang, W. D.; Li, A. Low-resistance thiophene-based conjugated microporous polymer nanotube filters for efficient particulate matter capture and oil/water separation. ACS Appl. Mater. Interfaces 2021, 13, 5823–5833.

    Article  CAS  PubMed  Google Scholar 

  8. Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 2008, 47, 3450–3453.

    Article  CAS  Google Scholar 

  9. Kamiya, K. Selective single-atom electrocatalysts: a review with a focus on metal-doped covalent triazine frameworks. Chem. Sci. 2020, 11, 8339–8349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ben, T.; Ren, H.; Ma, S. Q.; Cao, D. P.; Lan, J. H.; Jing, X. F.; Wang, W. C.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S. L.; Zhu, G. S. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 2009, 48, 9457–9460.

    Article  CAS  Google Scholar 

  11. Shen, Y. M.; Xue, Y.; Yan, M.; Mao, H. L.; Cheng, H.; Chen, Z.; Sui, Z. W.; Zhu, S. B.; Yu, X. J.; Zhuang, J. L. Synthesis of TEMPO radical decorated hollow porous aromatic frameworks for selective oxidation of alcohols. Chem. Commun. 2021, 57, 907–910.

    Article  CAS  Google Scholar 

  12. Jung, D.; Chen, Z. J.; Alayoglu, S.; Mian, M. R.; Goetjen, T. A.; Idrees, K. B.; Kirlikovali, K. O.; Islamoglu, T.; Farha, O. K. Postsynthetically modified polymers of intrinsic microporosity (PIMs) for capturing toxic gases. ACS Appl. Mater. Interfaces 2021, 13, 10409–10415.

    Article  CAS  PubMed  Google Scholar 

  13. Tozawa, T.; Jones, J. T. A.; Swamy, S. I.; Jiang, S.; Adams, D. J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.; Hasell, T.; Chong, S. Y.; Tang, C.; Thompson, S.; Parker, J.; Trewin, A.; Bacsa, J.; Slawin, A. M. Z.; Steiner, A.; Cooper, A. I. Porous organic cages. Nat. Mater. 2009, 8, 973–978.

    Article  CAS  PubMed  Google Scholar 

  14. Webstet, O. W.; Gentry, F. P.; Farlee, R. D.; Smart, B. E. Hypercrosslinked rigid-rod polymers. Makromol. Chem. Macromol. Symp. 1992, 54, 477–482.

    Article  Google Scholar 

  15. Li, J. Q.; Wang, Z.; Wang, Q. Q.; Guo, L. Y.; Wang, C.; Wang, Z.; Zhang, S. H.; Wu, Q. H. Construction of hypercrosslinked polymers for high-performance solid phase microextraction of phthalate esters from water samples. J. Chromatogr. A 2021, 1641, 461972.

    Article  CAS  PubMed  Google Scholar 

  16. Fontanals, N.; Marcé, R. M.; Borrulla, F.; Cormack, P. A. G. Hypercrosslinked materials: preparation, characterisation and applications. Polym. Chem. 2015, 6, 7231–7244.

    Article  CAS  Google Scholar 

  17. Tan, L. X.; Tan, B. E. Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem. Soc. Rev. 2017, 46, 3322–3356.

    Article  CAS  PubMed  Google Scholar 

  18. Tan, L. X.; Tan, B. E. Research progress in hypercrosslinked microporous organic polymers. Acta Chimica Sinica (in Chinese) 2015, 73, 530–540.

    Article  CAS  Google Scholar 

  19. Davankov, V.; Tsyurupa, M.; Ilyin, M.; Pavlova, L. Hypercross-linked polystyrene and its potentials for liquid chromatography: a mini-review. J. Chromatogr. A 2002, 965, 65–73.

    Article  CAS  PubMed  Google Scholar 

  20. Davankov, V. A.; Rogozhin, S. V.; Tsyurupa, M. P.; 1973, U.S. Pat.; 3,729,457

  21. Hradil, J.; Králová, E. Styrene-divinylbenzene copolymers post-crosslinked with tetrachloromethane. Polymer 1998, 39, 6041–6048.

    Article  CAS  Google Scholar 

  22. Macintyre, F. S.; Sherrington, D. C.; Tetley. L. Synthesis of ultrahigh surface area monodisperse porous polymer nanospheres. Macromolecules 2006, 39, 5381–5384.

    Article  CAS  Google Scholar 

  23. Wood, C. D.; Tan, B. E.; Trewin, A.; Niu, H. J.; Bradshaw, D.; Rosseinsky, M. J.; Khimyak, Y. Z.; Campbell, N. L.; Kirk, R.; Stöckel E.; Cooper, A. I. Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem. Mater. 2007, 19, 2034–2048.

    Article  CAS  Google Scholar 

  24. Luo, Y. L.; Zhang, S. C.; Ma, Y. X.; Wang, W.; Tan, B. E. Microporous organic polymers synthesized by self-condensation of aromatic hydroxymethyl monomers. Polym. Chem. 2013, 4, 1126–1131.

    Article  CAS  Google Scholar 

  25. Woodward, R. T. The design of hypercrosslinked polymers from benzyl ether self-condensing compounds and external crosslinkers. Chem. Commun. 2020, 56, 4938–4941.

    Article  CAS  Google Scholar 

  26. Li, B. Y.; Gong, R. N.; Wang, W.; Huang, X.; Zhang, W.; Li, H. M.; Hu, C. X.; Tan, B. E. A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 2011, 44, 2410–2414.

    Article  CAS  Google Scholar 

  27. Wang, S. L.; Zhang, C. X.; Shu, Y.; Jiang, S. L.; Xia, Q.; Chen, L. J.; Jin, S. B.; Hussain, I.; Cooper A. I.; Tan, B. E. Layered microporous polymers by solvent knitting method. Sci. Adv. 2017, 3, e1602610.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wilson, A. S. S.; Hill, M. S.; Mahon, M. F.; Dinoi, C.; Maron, L. Organocalcium-mediated nucleophilic alkylation of benzene. Science 2017, 358, 1168–1171.

    Article  CAS  PubMed  Google Scholar 

  29. Gilman, H.; Meals, R. Rearrangements in the Friedel-Crafts alkylation of benzene. J. Org. Chem. 2002, 8, 126–146.

    Article  Google Scholar 

  30. Rueping, M.; Nachtsheim, B. J. A review of new developments in the Friedel-Crafts alkylation from green chemistry to asymmetric catalysis. Beilstein J. Org. Chem. 2010, 6, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Soukupová, K.; Sassi, A.; Jeřábek, K. Reinforcing of expanded polymer morphology using peroxy radical initiator. React. Funct. Polym. 2009, 69, 353–357.

    Article  Google Scholar 

  32. Li, L.; Zhang, A. J.; Yu, J. H.; Li, W. Q.; Gao, H.; Tian, K.; Bai, H. One-step preparation of hierarchically porous polyureas: simultaneous foaming and hyper-crosslinking. Polymer 2017, 108, 332–338.

    Article  CAS  Google Scholar 

  33. Xia, Y. X.; Di, T.; Meng, Z. H.; Zhu, T. T.; Lei, Y. J.; Chen, S.; Li, T. S.; Li, L. Versatile one-pot construction strategy for the preparation of porous organic polymers via domino polymerization. Macromolecules 2021, 54, 4682–4692.

    Article  CAS  Google Scholar 

  34. Liu, W. H.; Wang, J. T.; Liu, J. J.; Hou, F. Y.; Wu, Q. H.; Wang, C.; Wang, Z. Preparation of phenylboronic acid based hypercrosslinked polymers for effective adsorption of chlorophenols. J. Chromatogr. A 2020, 1628, 461470.

    Article  CAS  PubMed  Google Scholar 

  35. Ding, L.; Zhang, A. J.; Li, W. Q.; Bai, H.; Li, L. Multi-length scale porous polymer films from hypercrosslinked breath figure arrays. J. Colloid. Interface Sci. 2016, 461, 179–184.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, Y. W.; Tan, B. E.; Wood. C. D. Solution-processable hypercrosslinked polymers by low cost strategies: a promising platform for gas storage and separation. J. Mater. Chem. A 2016, 4, 15072–15080.

    Article  CAS  Google Scholar 

  37. Ando, K.; Ito, T.; Tesehima, H.; Kusano, H.; in Ion exchange for industry, Ed. by Streat, M.; Springer, Chichester, UK, 1988, p. 232–238.

  38. Zeng, X. W.; Yu, T. J.; Wang, P.; Yuan, R. H.; Wen, Q.; Fan, Y. G.; Wang, C. H.; Shi, R. F. Preparation and characterization of polar polymeric adsorbents with high surface for the removal of phenol from water. J. Hazard. Mater. 2010, 177, 773–780.

    Article  CAS  PubMed  Google Scholar 

  39. Zeng, X. W.; Fan, Y. G.; Wu, G. L.; Wang, C. H.; Shi. R. F. Enhanced adsorption of phenol from water by a novel polar post-crosslinked polymeric adsorbent. J. Hazard. Mater. 2009, 169, 1022–1028.

    Article  CAS  PubMed  Google Scholar 

  40. Guo, F. H.; Wang, Y. P.; Chen, X. L.; Chen, M. Q.; He, W.; Chen, Z. Y. Supermacroporous polydivinylbenzene cryogels with high surface area: synthesis by solvothermal postcrosslinking and their adsorption behaviors for carbon dioxide and aniline. J. Appl. Polym. Sci. 2019, 136, 47716.

    Article  Google Scholar 

  41. Wu, Y.; Wang, D. X.; Li, L. G.; Yang, W. Y.; Feng, S. Y.; Liu, H. Z. Hybrid porous polymers constructed from octavinylsilsesqui-oxane and benzene via Friedel-Crafts reaction: tunable porosity, gas sorption, and postfunctionalization. J. Mater. Chem. A 2014, 2, 2160–2167.

    Article  CAS  Google Scholar 

  42. Shen, R.; Du, Y. J.; Yang, X. R.; Liu, H. Z. Silsesquioxanes-based porous functional polymers for water purification. J. Mater. Sci. 2020, 55, 7518–7529.

    Article  CAS  Google Scholar 

  43. He, J. X.; Zhao, G. H.; Mu, P.; Wei, H. J.; Su, Y. N.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Scalable fabrication of monolithic porous foam based on cross-linked aromatic polymers for efficient solar steam generation. Sol. Energy Mater Sol. Cells 2019, 201, 110111.

    Article  CAS  Google Scholar 

  44. Carraher, Jr., C. E.; in Polymer chemistry, Marcel Dekker, New York, 2003, p. 36–53.

    Google Scholar 

  45. Chen, X. L.; Ding, Y. Y.; Ren, D. Y.; Chen, Z. Y. Green synthesis of polymeric microspheres that are monodisperse and superhydrophobic, via quiescent redox-initiated precipitation polymerization. RSC Adv. 2016, 6, 27846–27851.

    Article  CAS  Google Scholar 

  46. Huang, H. Q.; Ding, Y. Y.; Chen, X. L.; Chen, Z. Y.; Kong, X. Z. Synthesis of monodisperse micron-sized poly(divinylbenzene) microspheres by solvothermal precipitation polymerization. Chem. Eng. J. 2016, 289, 135–141.

    Article  CAS  Google Scholar 

  47. Hubbard, K. L.; Finch, J. A.; Darling, G. D. The preparation and characteristics of poly(divinylbenzene-co-ethylvinylbenzene), including Ambetilite XAD-4. Styrenic resins with pendant vinylbenzene groups. React. Funct. Polym. 1998, 36, 17–30.

    Article  CAS  Google Scholar 

  48. Okay, O. Macroporous copolymer networks. Prog. Polym. Sci. 2000, 25, 711–779.

    Article  CAS  Google Scholar 

  49. Dawson, R.; Cooper, A. I.; Adams, D. J. Nanoporous organic polymer networks. Prog. Polym. Sci. 2012, 37, 530–563.

    Article  CAS  Google Scholar 

  50. Ahn, J. H.; Jang, J. E.; Oh, C. G.; Ihm, S. K.; Cortez, J.; Sherrington, D. C. Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-Type hyper-cross-linked resins. Macromolecules 2006, 39, 627–632.

    Article  CAS  Google Scholar 

  51. Liu, Y.; Fan, X. L.; Jia, X. K.; Zhang, B. L.; Zhang, H. P.; Zhang, A. B.; Zhang, Q. Y. Hypercrosslinked polymers: controlled preparation and effective adsorption of aniline. J. Mater. Sci. 2016, 51, 8579–8592.

    Article  CAS  Google Scholar 

  52. Dawson, R.; Stevens, L. A.; Drage, T. C.; Snape, C. E.; Smith, M. W.; Adams, D. J.; Cooper, A. I. Porous organic alloys. J. Am. Chem. Soc. 2012, 134, 10741–10744.

    Article  CAS  PubMed  Google Scholar 

  53. Law, R. V.; Sherrington, D. C.; Snape, C. E. Solid-state 13C MAS NMR studies of hyper-cross-linked polystyrene resins. Macromolecules 1996, 29, 6284–6293.

    Article  CAS  Google Scholar 

  54. Liu, F.; Liang, W. D.; Wang, C. J.; He, J. X.; Xiao, C. H.; Zhu, Z. Q.; Sun, H. X.; Li, A. Superwetting monolithic hypercrosslinked polymers nanotubes with high salt-resistance for efficient solar steam generation. Sol. Energy Mater Sol. Cells 2021, 221, 110913.

    Article  CAS  Google Scholar 

  55. Yan, Q.; Bai, Y. W.; Meng, Z.; Yang, W. T. Precipitation polymerization in acetic acid: synthesis of monodisperse cross-linked poly(divinylbenzene) microspheres. J. Phys. Chem. B 2008, 112, 6914–6922.

    Article  CAS  PubMed  Google Scholar 

  56. Li, H. Y.; Meng, B.; Mahurin, S. M.; Chai, S. H.; Nelson, K. M.; Baker, D. C.; Liu, H. L.; Dai, S. Carbohydrate based hyper-crosslinked organic polymers with -OH functional groups for CO2 separation. J. Mater. Chem. A 2015, 3, 20913–20918.

    Article  CAS  Google Scholar 

  57. Robshaw, T. J.; Jamesa, A. M.; Hammonda, D. B.; Reynolds, J.; Dawsona, R.; Ogden, M. D. Calcium-loaded hydrophilic hypercrosslinked polymers for extremely high defluoridation capacity via multiple uptake mechanisms. J. Mater. Chem. A 2020, 8, 7130–7144.

    Article  CAS  Google Scholar 

  58. Wu, Y.; Li, L. G.; Yang, W. Y.; Feng, S. Y.; Liu, H. Z. Hybrid nanoporous polystyrene derived from cubic octavinylsilses-quioxane and commercial polystyrene via the Friedel-Crafts reaction. RSC Adv. 2015, 5, 12987–12993.

    Article  CAS  Google Scholar 

  59. Yang, Z. Z.; Fu, S. Q.; Yan, C.; Yao, J. S.; Liu, W. L. Hyper-cross-linked polymers based on triphenylsilane for hydrogen storage and water treatment. J. Macromol. Sci. A 2018, 56, 162–169.

    Article  CAS  Google Scholar 

  60. Gao, H.; Ding, L.; Bai, H.; Liu, A. H.; Li, S. Z.; Li, L. Pitch-based hyper-cross-linked polymers with high performance for gas adsorption. J. Mater. Chem. A 2016, 4, 16490–16498.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank National Key R&D Program of China (No. 2017YFC1600404) and Natural Science Foundation of Shandong Province (No. ZR2013BM011) for financial support. The research was also supported by Open Projects Fund of Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University (No. 2019CCG02), Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, and Science and Technology Bureau of Jinan (No. 2021GXRC105). The authors thank Dr. Yang Xu for valuable discussion with preparation and characterization of HCPs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi-Wei Pan, Yun-Feng Xie or Zhi-Yong Chen.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, ZY., Wang, YY., Pan, QW. et al. Hypercrosslinking Polymers Fabricated from Divinyl Benzene via Friedel-Crafts Addition Polymerization. Chin J Polym Sci 40, 310–320 (2022). https://doi.org/10.1007/s10118-022-2667-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2667-7

Keywords

Navigation