Skip to main content
Log in

A Furan-based Phosphaphenanthrene-containing Derivative as a Highly Efficient Flame-retardant Agent for Epoxy Thermosets without Deteriorating Thermomechanical Performances

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In order to reduce greenhouse gas emissions, developing flame retardants from bio-based resources has aroused extensive interest in recent years. In this work, we utilized furfural (biomass) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) to synthesize a bio-based co-curing agent (FGD) to combine with 4,4’-diaminodiphenyl methane (DDM) for obtaining a low-phosphorus loading flame-retardant epoxy thermosets. The introduction of FGD decreased the activation energy of the curing progress, enhanced the mechanical properties of the epoxy thermosets, and did not affect the glass transition temperature of the epoxy thermosets. EP-5.0 had a lower thermal degradation rate and a doubled char yield compared with EP-0. The phosphorus content of EP-5.0 was only 0.45 wt%, while EP-5.0 reached the UL-94 V-0 rating with a high LOI value of 32%. Compared with EP-0, the PHRR of EP-2.5 and EP-5.0 decreased by 22.3% and 31.3%, respectively. The SEM results showed that the addition of FGD made the char residues more uniform and denser, which could effectively prevent combustible volatiles from escaping from the degradation area to the flame area and isolate the heat transfer so that the epoxy thermosets had an excellent flame-retardant performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Frederick, W. J.; Hallett, J. P.; Leak, D. J.; Liotta, C. L.; Mielenz, J. R.; Murphy, R.; Templer, R.; Tschaplinski, T. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489.

    Article  CAS  Google Scholar 

  2. Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J. P. Biobased thermosetting epoxy: present and future. Chem. Rev. 2014, 114, 1082–1115.

    Article  CAS  Google Scholar 

  3. Niu, H.; Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Phosphorus-free vanillin-derived intrinsically flame-retardant epoxy thermoset with extremely low heat release rate and smoke emission. ACS Sustain. Chem. Eng. 2021, 9, 5268–5277.

    Article  CAS  Google Scholar 

  4. Wang, X.; Niu, H.; Guo, W.; Song, L.; Hu, Y. Cardanol as a versatile platform for fabrication of bio-based flame-retardant epoxy thermosets as DGEBA substitutes. Chem. Eng. J. 2021, 421, 129738.

    Article  CAS  Google Scholar 

  5. Tong, X. L.; Ma, Y.; Li, Y. D. Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. AGen. 2010, 385, 1–13.

    Article  CAS  Google Scholar 

  6. Bozell, J. J.; Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554.

    Article  CAS  Google Scholar 

  7. Kamm, B.; Gruber, P. R.; Kamm, M. Biorefineries-industrial processes and products. Chemistry International—Newsmagazine for IUPAC 2008, 29, 25.

    Google Scholar 

  8. Zhang, Z.; Dong, K.; Zhao, Z. Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst. ChemSusChem 2011, 4, 112–118.

    Article  CAS  Google Scholar 

  9. Lessard, J.; Morin, J. F.; Wehrung, J. F.; Magnin, D.; Chornet, E. High yield conversion of residual pentoses into furfural via zeolite catalysis and catalytic hydrogenation of furfural to 2-methylfuran. Top. Catal. 2010, 53, 1231–1234.

    Article  CAS  Google Scholar 

  10. Zheng, H. Y.; Zhu, Y. L.; Teng, B. T.; Bai, Z. Q.; Zhang, C. H.; Xiang, H. W.; Li, Y. W. Towards understanding the reaction pathway in vapour phase hydrogenation of furfural to 2-methylfuran. J. Mol. Catal. A-Chem. 2006, 246, 18–23.

    Article  CAS  Google Scholar 

  11. Jin, F.L.; Li, X.; Park, S. J. Synthesis and application of epoxy resins: a review. J. Ind. Eng. Chem. 2015, 29, 1–11.

    Article  CAS  Google Scholar 

  12. Zhou, Y. F.; Chu, F. K.; Qiu, S. L.; Guo, W. W.; Zhang, S. H.; Xu, Z. M.; Hu, W. Z.; Hu, Y. Construction of graphite oxide modified black phosphorus through covalent linkage: an efficient strategy for smoke toxicity and fire hazard suppression of epoxy resin. J. Hazard. Mater. 2020, 399, 123015.

    Article  CAS  Google Scholar 

  13. Gao, C.; Yu, T.; Sun, J.; Gu, X.; Li, H.; Mu, C.; Zhang, S. A phosphate covalent organic framework: synthesis and applications in epoxy resin with outstanding fire performance and mechanical properties. Polym. Degrad. Stabil. 2021, 190, 109613.

    Article  CAS  Google Scholar 

  14. Wang, M.; Wu, Q.; Feng, Z.; Gu, X.; Li, H.; Sun, J.; Fei, B.; Zhang, S. Surface modification of cellulose microcrystalline with aluminate coupling agent and its effects on flame retardant and mechanical properties of epoxy resin. Fiber Polym. 2020, 21, 2344–2352.

    Article  CAS  Google Scholar 

  15. Chen, L.; Wang, Y. Z. A review on flame retardant technology in China. Part 1: development of flame retardants. Polym. Adv. Technol. 2010, 21, 1–26.

    Article  Google Scholar 

  16. Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J. M.; Dubois, P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R 2009, 63, 100–125.

    Article  Google Scholar 

  17. Braun, U.; Schartel, B.; Fichera, M. A.; Jaeger, C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6. Polym. Degrad. Stabil. 2007, 92, 1528–1545.

    Article  CAS  Google Scholar 

  18. Martin, C.; Ronda, J. C.; Cadiz, V. Boron-containing novolac resins as flame retardant materials. Polym. Degrad. Stabil. 2006, 91, 747–754.

    Article  CAS  Google Scholar 

  19. Lu, S. Y.; Hamerton, I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 2002, 27, 1661–1712.

    Article  CAS  Google Scholar 

  20. van der Veen, I.; de Boer, J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153.

    Article  CAS  Google Scholar 

  21. Wang, X.; Hu, Y.; Song, L.; Xing, W.; Lu, H.; Lv, P.; Jie, G. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 2010, 51, 2435–2445.

    Article  CAS  Google Scholar 

  22. Levchik, S. V.; Weil, E. D. A review of recent progress in phosphorus-based flame retardants. J. Fire Sci. 2006, 24, 345–364.

    Article  CAS  Google Scholar 

  23. Qian, X. D.; Song, L.; Yuan, B. H.; Yu, B.; Shi, Y. Q.; Hu, Y.; Yuen, R. K. K. Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system. Mater. Chem. Phys. 2014, 143, 1243–1252.

    Article  CAS  Google Scholar 

  24. Dasari, A.; Yu, Z. Z.; Cai, G. P.; Mai, Y. W. Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 2013, 38, 1357–1387.

    Article  CAS  Google Scholar 

  25. Covaci, A.; Harrad, S.; Abdallah, M. A. E.; Ali, N.; Law, R. J.; Herzke, D.; de Wit, C. A. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ. Int. 2011, 37, 532–556.

    Article  CAS  Google Scholar 

  26. Carja, I. D.; Serbezeanu, D.; Vlad-Bubulac, T.; Hamciuc, C.; Coroaba, A.; Lisa, G.; Lopez, C. G.; Soriano, M. F.; Perez, V. F.; Sanchez, M. D. R. A straightforward, eco-friendly and cost-effective approach towards flame retardant epoxy resins. J. Mater. Chem. A 2014, 2, 16230–16241.

    Article  CAS  Google Scholar 

  27. Perret, B.; Schartel, B.; Stoss, K.; Ciesielski, M.; Diederichs, J.; Doring, M.; Kramer, J.; Altstadt, V. Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. Eur. Polym. J. 2011, 47, 1081–1089.

    Article  CAS  Google Scholar 

  28. Shieh, J. Y.; Wang, C. S. Synthesis of novel flame retardant epoxy hardeners and properties of cured products. Polymer 2001, 42, 7617–7625.

    Article  CAS  Google Scholar 

  29. Natarajan, M.; Murugavel, S. C. Cure kinetics of bio-based epoxy resin developed from epoxidized cardanol-formaldehyde and diglycidyl ether of bisphenol-A networks. J. Therm. Anal. Calorim. 2010, 125, 387–396.

    Article  Google Scholar 

  30. Pan, X.; Sengupta, P.; Webster, D. C. High biobased content epoxy-anhydride thermosets from epoxidized sucrose esters of fatty acids. Biomacromolecules 2011, 12, 2416–2428.

    Article  CAS  Google Scholar 

  31. Xiao, Y. L.; Mu, X. W.; Wang, B. B.; Hu, W. Z.; Wang, J. L.; Zhou, F.; Ma, C.; Hu, Y.; Song, L. A novel phosphorous-containing polymeric compatibilizer: effective reinforcement and flame retardancy in glass fiber reinforced polyamide 6 composites. Compos. Part B-Eng. 2021, 205, 108536.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 22075265) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2021459).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2655_MOESM1_ESM.pdf

A Furan-based Phosphaphenanthrene-containing Derivative as a Highly Efficient Flame-retardant Agent for Epoxy Thermosets without Deteriorating Thermomechanical Performances

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, HX., Ding, HL., Huang, JL. et al. A Furan-based Phosphaphenanthrene-containing Derivative as a Highly Efficient Flame-retardant Agent for Epoxy Thermosets without Deteriorating Thermomechanical Performances. Chin J Polym Sci 40, 233–240 (2022). https://doi.org/10.1007/s10118-022-2655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2655-y

Keywords

Navigation