Skip to main content
Log in

A New Evaluation Criterion for Optimizing the Mechanical Properties of Toughened Polypropylene/Silica Nanocomposites

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

This study aims to experiment with the mechanical properties of polypropylene (PP)/thermoplastic elastomer/nano-silica/compatibilizer nanocomposite using the melt mixing method. The addition of polyolefin elastomers has proved to be an approachable solution for low impact strength of PP, while it would also reduce the Young’s modulus and tensile strength. That is why reinforcement would be applied to this combination to enhance the elastic modulus. The mechanical properties of the prepared composites were devised to train an artificial neural network to predict these properties of the system in 6256 unknown points. Therefore, the sensitivity analysis was performed and the share of each input parameter on the respective output values was calculated. Additionally, a novel parameter called nanocomposite evaluation criterion (NEC) is introduced to analyze the suitability of the nanocomposites considering the mechanical properties. Accordingly, the formulation with optimal mechanical properties of toughness, elongation at break, tensile strength, Young’s modulus, and impact strength was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

EB:

Elongation at break

EVA:

Ethylene-vinyl acetate

IS:

Impact strength

MA:

Maleic anhydride

NEC:

Nanocomposite evaluation criterion

PP:

Polypropylene

PP-g-MA:

Polypropylene grafted maleic anhydride

TO:

Toughness

TPE:

Thermoplastic elastomer

TPO:

Thermoplastic polyolefin

TPU:

Thermoplastic polyurethane

TS:

Tensile strength

YM:

Young’s modulus

References

  1. Maira, B.; Takeuchi, K.; Chammingkwan, P.; Terano, M.; Taniike, T. Thermal conductivity of polypropylene/aluminum oxide nanocomposites prepared based on reactor granule technology. Compos. Sci. Technol.2018165, 259–265.

    Article  CAS  Google Scholar 

  2. Xu, C.; Zheng, Z.; Wu, W.; Wang, Z.; Fu, L. Dynamically vulcanized PP/EPDM blends with balanced stiffness and toughness via insitu compatibilization of MAA and excess ZnO nanoparticles: preparation, structure and properties. Compos. Part B Eng.2019160, 147–157.

    Article  CAS  Google Scholar 

  3. Aumnate, C.; Limpanart, S.; Soatthiyanon, N.; Khunton, S. PP/organoclay nanocomposites for fused filament fabrication (FFF) 3D printing. Express Polym. Lett.201913, 898–909.

    Article  CAS  Google Scholar 

  4. Shonaike, G. O.; Matsuo, T. Impregnation conditions on glass fiber reinforced thermoplastic polyster elastomer composites. J. Reinf. Plast. Compos.199615, 16–29.

    Article  CAS  Google Scholar 

  5. Shonaike, G. O.; Matsuo, T. Experimental analysis of relation between shear coupling element and bias angle of carbon fiber reinforced polyether-polyester elastomer composites. J. Reinf. Plast. Compos.199716, 217–225.

    Article  CAS  Google Scholar 

  6. Lee, J. W.; Kwon, T.; Kang, Y.; Han, T. H.; Cho, C. G.; Hong, S. M.; Hwang, S. W.; Koo, C. M. Styrenic block copolymer/sulfonated graphene oxide composite membranes for highly bendable ionic polymer actuators with large ion concentration gradient. Compos. Sci. Technol.2018163, 63–70.

    Article  CAS  Google Scholar 

  7. Paran, S. M. R.; Abdorahimi, M.; Shekarabi, A.; Khonakdar, H. A.; Jafari, S. H.; Saeb, M. R. Modeling and analysis of nonlinear elastoplastic behavior of compatibilized polyolefin/polyester/clay nanocomposites with emphasis on interfacial interaction exploration. Compos. Sci. Technol.2018154, 92–103.

    Article  CAS  Google Scholar 

  8. Sun, W. J.; Xu, L.; Jia, L. C.; Zhou, C. G.; Xiang, Y.; Yin, R. H.; Yan, D. X.; Tang, J. H.; Li, Z. M. Highly conductive and stretchable carbon nanotube/thermoplastic polyurethane composite for wearable heater. Compos. Sci. Technol.2019181, 107695.

    Article  Google Scholar 

  9. Huang, Z. M. Characterization of knitted fabric reinforced elastomer composite. J. Reinf. Plast. Compos.199918, 118–137.

    Article  CAS  Google Scholar 

  10. Bajsić, E. G.; Šmit, I.; Leskovac, M. Blends of thermoplastic polyurethane and polypropylene. I. Mechanical and phase behavior. J. Appl. Polym. Sci.2007104, 3980–3985.

    Article  Google Scholar 

  11. Fasihi, M.; Mansouri, H. Effect of rubber interparticle distance distribution on toughening behavior of thermoplastic polyolefin elastomer toughened polypropylene. J. Appl. Polym. Sci.2016133, 44068.

    Article  Google Scholar 

  12. Liang, J. Z. Mechanical properties and morphology of polypropylene/poly(ethylene-co-octene) blends. J. Polym. Environ.201220, 872–878.

    Article  CAS  Google Scholar 

  13. Członka, S.; Strąkowska, A.; Strzelec, K.; Kairytė, A.; Vaitkus, S. Composites of rigid polyurethane foams and silica powder filler enhanced with ionic liquid. Polym. Test.201975, 12–25.

    Article  Google Scholar 

  14. Sahraeian, R.; Davachi, S. M.; Heidari, B. S. The effect of nanoperlite and its silane treatment on thermal properties and degradation of polypropylene/nanoperlite nanocomposite films. Compos. Part B Eng.2019162, 103–111.

    Article  CAS  Google Scholar 

  15. Davachi, S. M.; Heidari, B. S.; Sahraeian, R.; Abbaspourrad, A. The effect of nanoperlite and its silane treatment on the crystallinity, rheological, optical, and surface properties of polypropylene/nanoperlite nanocomposite films. Compos. Part B Eng.2019175, 107088.

    Article  Google Scholar 

  16. Parimalam, M.; Islam, M. R.; Yunus, R. M. Effects of nanosilica, zinc oxide, titatinum oxide on the performance of epoxy hybrid nanocoating in presence of rubber latex. Polym. Test.201870, 197–207.

    Article  CAS  Google Scholar 

  17. Panaitescu, D. M.; Vuluga, Z.; Radovici, C.; Nicolae, C. Morphological investigation of PP/nanosilica composites containing SEBS. Polym. Test.201231, 355–365.

    Article  CAS  Google Scholar 

  18. Lee, S. H.; Kontopoulou, M.; Park, C. B. Effect of nanosilica on the co-continuous morphology of polypropylene/polyolefin elastomer blends. Polymer201051, 1147–1155.

    Article  CAS  Google Scholar 

  19. Liu, Y.; Kontopoulou, M. The structure and physical properties of polypropylene and thermoplastic olefin nanocomposites containing nanosilica. Polymer200647, 7731–7739.

    Article  CAS  Google Scholar 

  20. Canto, L. B. Aspects regarding the efficiency of nanosilica as an interfacial compatibilizer of a polypropylene/ethylene vinylacetate immiscible blend. Polym. Test.201973, 135–142.

    Article  CAS  Google Scholar 

  21. Liu, B.; Shangguan, Y.; Zheng, Q. Toughening of ethylenepropylene random copolymer/clay nanocomposites: Comparison of different compatibilizers. Chinese J. Polym. Sci.201230, 853–864.

    Article  CAS  Google Scholar 

  22. Ma, G.; Zhai, J.; Liu, B.; Huang, D.; Sheng, J. Plasma modification of polypropylene surfaces and grafting copolymerization of styrene onto polypropylene. Chinese J. Polym. Sci.201230, 423–435.

    Article  CAS  Google Scholar 

  23. Wang, L.; Jiang, Z.; Liu, F.; Zhang, Z.; Tang, T. Effects of branches on the crystallization kinetics of polypropylene-g-polystyrene and polypropylene-g-poly(n-butyl acrylate) graft copolymers with well-defined molecular structures. Chinese J. Polym. Sci.201432, 333–349.

    Article  CAS  Google Scholar 

  24. Bikiaris, D. N.; Vassiliou, A.; Pavlidou, E.; Karayannidis, G. P. Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing. Eur. Polym. J.200541, 1965–1978.

    Article  CAS  Google Scholar 

  25. Tessier, R.; Lafranche, E.; Krawczak, P. Development of novel meltcompounded starch-grafted polypropylene/polypropylenegrafted maleic anhydride/organoclay ternary hybrids. Express Polym. Lett.20126, 937–952.

    Article  CAS  Google Scholar 

  26. Bezerra, E. M.; Bento, M. S.; Rocco, J. A. F. F.; Iha, K.; Lourenço, V. L.; Pardini, L. C. Artificial neural network (ANN) prediction of kinetic parameters of (CRFC) composites. Comput. Mater. Sci.200844, 656–663.

    Article  CAS  Google Scholar 

  27. Seyhan, A. T.; Tayfur, G.; Karakurt, M.; Tanoğlu, M. Artificial neural network (ANN) prediction of compressive strength of VARTM processed polymer composites. Comput. Mater. Sci.200534, 99–105.

    Article  CAS  Google Scholar 

  28. Pourrahmani, H.; Moghimi, M.; Siavashi, M. Thermal management in PEMFCs: the respective effects of porous media in the gas flow channel. Int. J. Hydrog. Energy201944, 3121–3137.

    Article  CAS  Google Scholar 

  29. Pourrahmani, H.; Moghimi, M.; Siavashi, M.; Shirbani, M. Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs. Appl. Therm. Eng.2019150, 433–444.

    Article  Google Scholar 

  30. Pourrahmani, H.; Siavashi, M.; Moghimi, M. Design optimization and thermal management of the PEMFC using artificial neural networks. Energy2019182, 443–459.

    Article  Google Scholar 

  31. Nazari, A.; Riahi, S. Prediction split tensile strength and water permeability of high strength concrete containing TiO2 nanoparticles by artificial neural network and genetic programming. Compos. Part B Eng.201142, 473–488.

    Article  Google Scholar 

  32. Câmara, E. C. B.; Freire, R. C. S. Using neural networks to modeling the transverse elasticity modulus of unidirectional composites. Compos. Part B Eng.201142, 2024–2029.

    Article  Google Scholar 

  33. Liu, Q.; Li, H.; Yan, S. Structure and properties of β-polypropylene reinforced by polypropylene fiber and polyamide fiber. Chinese J. Polym. Sci.201432, 509–518.

    Article  CAS  Google Scholar 

  34. Zhu, H.; Du, M.; Xu, C.; Zhang, X.; Fu, Y. Organic-inorganic hybrid network constructed in polypropylene matrix and its reinforcing effects on polypropylene composites. J. Reinf. Plast. Compos.201332, 174–182.

    Article  Google Scholar 

  35. Saleeb, A. F.; Wilt, T. E.; Al-Zoubi, N. R.; Gendy, A. S. An anisotropic viscoelastoplastic model for composites—sensitivity analysis and parameter estimation. Compos. Part B Eng.200334, 21–39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Fasihi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourrahmani, H., Golparvar, M. & Fasihi, M. A New Evaluation Criterion for Optimizing the Mechanical Properties of Toughened Polypropylene/Silica Nanocomposites. Chin J Polym Sci 38, 877–887 (2020). https://doi.org/10.1007/s10118-020-2399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2399-5

Keywords

Navigation