Skip to main content
Log in

Polyether-polyester and HMDI Based Polyurethanes: Effect of PLLA Content on Structure and Property

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Thermoplastic poly(ether-ester-urethane)s were synthesized from poly(L-lactide) diols (PLLA diols), polytetrahydrofuran diol (PTMG diols), 4,4′-dicyclohexylmethane diisocyanate (HMDI), and 1,4-butanediol (BDO) by a two-step reaction, and the morphology and property of the resultant TPU could be adjusted by varying the PLLA contents. The soft segment was composed of PLLA and PTMG diols. By controlling the percentage of PLLA in the soft segment, the glass transition temperature and mechanical properties of the polyurethanes could be regulated. Based on the FTIR spectrum, we found that two kinds of hydrogen bonding existed individually in soft matrix and hard domain. The hydrogen bonding in soft matrix was unstable, which could be destroyed during elongation. With in situ stretching WAXS and SAXS experiments, we found that the PLLA crystal was destroyed and the PLLA domain oriented along the stretch direction. Finally, we proposed a schematic model to illustrate the microstructures of these elastomers before and after stretch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheth, J. P.; Xu, J. N.; Wilkes, G. L. Solid state structure-property behavior of semicrystalline poly(ether-block-amide) PE-BAX® thermoplastic elastomers. Polymer 2003, 44, 743–756.

    Article  CAS  Google Scholar 

  2. Hepburn, C. Polyurethane elastomers. Springer Science & Business Media, 2012.

  3. Oertel, G. Polyurethane handbook. Reinf. Plast 1986, 30, 51.

    Google Scholar 

  4. Harrell, L. L. Segmented Polyurethans. Properties as a function of segment size and distribution. Macromolecules 1969, 22, 607–612.

    Article  Google Scholar 

  5. Oguro, K.; Kun, N.; Nishimura, H.; Kobayashi, M.; Doi, T. Modified PTMG based thermoplastic polyurethane elastomers. J. Elastom. Plast. 1985, 17, 261–272.

    Article  CAS  Google Scholar 

  6. Fang, H.; Wang, H.; Sun, J.; Wei, H.; Ding, Y. Tailoring elastomeric properties of waterborne polyurethane by incorporation of polymethyl methacrylate with nanostructural heterogeneity. RSC Adv. 2016, 6, 13589–13599.

    Article  CAS  Google Scholar 

  7. Nozaki, S.; Hirai, T.; Higaki, Y.; Yoshinaga, K.; Kojio, K.; Takahara, A. Effect of chain architecture of polyol with secondary hydroxyl group on aggregation structure and mechanical properties of polyurethane elastomer. Polymer 2017, 116, 423–428.

    Article  CAS  Google Scholar 

  8. Petrović, Z. S.; Ferguson, J. Polyurethane elastomers. Prog. Polym. Sci. 1991, 16, 695–836.

    Article  Google Scholar 

  9. Prisacariu, C.; Scortanu, E.; Coseri, S.; Agapie, B. Effect of soft segment polydispersity on the elasticity of polyurethane elastomers. Ind. Eng. Chem. Res. 2013, 56, 2316–2322.

    Article  Google Scholar 

  10. Tang, D.; Macosko, C. W.; Hillmyer, M. A. Thermoplastic polyurethane elastomers from bio-based poly(δ-decalactone) diols. Polym. Chem. 2014, 5, 3231–3237.

    Article  CAS  Google Scholar 

  11. Xiang, D.; Liu, L.; Liang, Y. Effect of hard segment content on structure, dielectric and mechanical properties of hydroxyl-terminated butadiene-acrylonitrile copolymer-based polyurethane elastomers. Polymer 2017, 132, 180–187.

    Article  CAS  Google Scholar 

  12. Lempesis, N.; in’t Veld, P. J.; Rutledge, G. C. Atomistic simulation of the structure and mechanics of a semicrystalline polyether. Macromolecules 2016, 49, 5714–5726.

    Article  CAS  Google Scholar 

  13. Szycher, M.; Poirier, V. L.; Dempsey, D. J. Development of an aliphatic biomedical-grade polyurethane elastomer. J. Elastom. Plast. 1983, 15, 81–95.

    Article  CAS  Google Scholar 

  14. Cheng, G.; Liu, X.; Xu, R. X.; Zhang, J.; Fang, S.; Jiang, Z. Effect of polyether soft segments on the properties of hmdi based transparent polyurethane elastomers. Polyurethane Industry (in Chinese) 2016, 31, 40–43.

    Google Scholar 

  15. Solíscorrea, R. E.; Vargascoronado, R.; Aguilarvega, M.; Cauichrodríguez, J. V.; Román, J. S.; Marcos, A. Synthesis of HMDI-based segmented polyurethanes and their use in the manufacture of elastomeric composites for cardiovascular applications. J. Biomat. Sci-Polym. E 2007, 18, 561–578.

    Article  Google Scholar 

  16. Li, Z.; Tan, B. H.; Lin, T.; He, C. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci. 2016, 62, 22–72.

    Article  Google Scholar 

  17. Li, Z.; Yuan, D.; Jin, G.; Tan, B. H.; He, C. Facile layer-by-layer self-assembly toward enantiomeric poly(lactide) stereocomplex coated magnetite nanocarrier for highly tunable drug deliveries. ACS Appl. Mater. Interfaces 2016, 8, 1842–1853.

    Article  CAS  Google Scholar 

  18. Tan, B. H.; Muiruri, J. K.; Li, Z.; He, C. Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain. Chem. Eng. 2016, 4, 5370–5391.

    Article  CAS  Google Scholar 

  19. Huang, J.; Lisowski, M. S.; Runt, J.; Hall, E. S.; Kean, R. T.; Buehler, N.; Lin, J. S. Crystallization and microstructure of poly(L-lactide-co-meso-lactide) copolymers. Macromolecules 1998, 31, 2593–2599.

    Article  CAS  Google Scholar 

  20. Lv, R.; Peng, N.; Jin, T.; Na, B.; Wang, J.; Liu, H. Stereocomplex mesophase and its phase transition in enantiomeric polylactides. Polymer 2017, 116, 324–330.

    Article  CAS  Google Scholar 

  21. Abayasinghe, N. K.; Perera, K. P.; Thomas, C.; Daly, A.; Suresh, S.; Burg, K.; Harrison, G. M.; Smith, D. W. Amido-modified polylactide for potential tissue engineering applications. J. Biomat. Sci. Polym. E 2004, 15, 595–606.

    Article  CAS  Google Scholar 

  22. Panyam, J.; Labhasetwar, V. Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nano-particles. Mol. Pharm. 2004, 1, 77–84.

    Article  CAS  Google Scholar 

  23. Jain, R. A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 21, 2475–2490.

    Article  CAS  Google Scholar 

  24. Jung, T.; Kamm, W.; Breitenbach, A.; Kaiserling, E.; Xiao, J. X.; Kissel, T. Biodegradable nanoparticles for oral delivery of peptides: Is there a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm. 2000, 50, 147–160.

    Article  CAS  Google Scholar 

  25. Gu, S. Y.; Yang, M.; Yu, T.; Ren, T. B.; Ren, J. Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension. Polym. Int. 2008, 57, 982–986.

    Article  CAS  Google Scholar 

  26. Hoshi, M.; Ieshige, M.; Saitoh, T.; Nakagawa, T. Separation of aqueous phenol through polyurethane membranes by pervaporation. II. Influence of diisocyanate and diol compounds and crosslinker. J. Appl. Polym. Sci. 1999, 71, 439–448.

    Article  CAS  Google Scholar 

  27. Hiltunen, K.; Härkönen, M.; Seppälä, J. V.; Väänänen, T. Synthesis and characterization of lactic acid based telechelic pre-polymers. Macromolecules 1996, 29, 8677–8682.

    Article  CAS  Google Scholar 

  28. Schneider, N. S.; Matton, R. W. Thermal transition behavior of polybutadiene containing polyurethanes. Polym. Eng. Sci. 1979, 19, 1122–1128.

    Article  CAS  Google Scholar 

  29. Xu, M.; Macknight, W. J.; Chen, C. H. Y.; Thomas, E. L. Structure and morphology of segmented polyurethanes: 1. Influence of incompatability on hard-segment sequence length. Polymer 1983, 24, 1327–1332.

    Article  CAS  Google Scholar 

  30. Hesketh, T. R.; Vanbogart, J. W. C.; Cooper, S. L. Differential scanning calorimetry analysis of morphological-changes in segmented elastomers. Polym. Eng. Sci. 1980, 20, 190–197.

    Article  CAS  Google Scholar 

  31. Tsuji, H.; Ishida, T. Poly(L-lactide). X. Enhanced surface hydrophilicity and chain-scission mechanisms of poly(L-lactide) film in enzymatic, alkaline, and phosphate-buffered solutions. J. Appl. Polym. Sci. 2003, 87, 1628–1633.

    Article  CAS  Google Scholar 

  32. Lucas, J. C.; Failla, M. D.; Smith, F. L.; Mandelkern, L. The double yield in the tensile deformation of the polyethylenes. Polym. Eng. Sci. 1995, 35, 1117–1123.

    Article  CAS  Google Scholar 

  33. Popli, R.; Mandelkern, L. Influence of structural and morphological factors on the mechanical-properties of the polyethylenes. J. Polym. Sci., Part. B: Polym. Phys. 1987, 25, 441–483.

    Article  CAS  Google Scholar 

  34. Lendlein, A.; Kelch, S. Shape-memory polymers. Encyclopedia of Materials Science & Technology 2002, 41, 2034–2057.

    CAS  Google Scholar 

  35. Zhang, L.; Jiang, Y.; Xiong, Z.; Liu, X.; Na, H.; Zhang, R.; Zhu, J. Highly recoverable rosin-based shape memory polyurethanes. J. Mater. Chem. A 2013, 1, 3263–3267.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFB0309300), the National Natural Science Foundation of China (No. 51773218), Youth Innovation Promotion Association of CAS (No. 2018338), and Ningbo Natural Science Foundation (No.2018A610109). We thank Shanghai Synchrotron Radiation Facility (SSRF) for supporting the SAXS and WAXD test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruo-Yu Zhang, Zhao-Bin Tang or Jin Zhu.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Zhang, RY., Ying, WB. et al. Polyether-polyester and HMDI Based Polyurethanes: Effect of PLLA Content on Structure and Property. Chin J Polym Sci 37, 1152–1161 (2019). https://doi.org/10.1007/s10118-019-2283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2283-3

Keywords

Navigation