Skip to main content
Log in

Thermoresponsive Fluorescent Semicrystalline Polymers Decorated with Aggregation Induced Emission Luminogens

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Thermoresponsive fluorescent polymers (TFPs) with unique temperature-dependent luminescent properties are of great importance for the development of new functional devices in recent years. Herein, we facilely synthesized an efficient blue-emissive polymer, abbreviated as PCB-TPE, using tetraphenylethene (TPE) as the main building block. PCB-TPE is thermally stable with a novel property of aggregation induced emission (AIE). The thermoresponsive property and mechanism of PCB-TPE were investigated. Its emission shows temperature-dependent features and reveals fine details in the thermal transitions from −10 °C to 60 °C. The polymer offers a platform for the development of efficient luminescent materials for further biological and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mei, J.; Huang, Y. H.; He, T. Progress and trends in AIE–based bioprobes: A brief overview. ACS Appl. Mater. Interfaces 2018,10,12217–12261.

    Article  CAS  PubMed  Google Scholar 

  2. Yang, J.; Huang, J.; Li, Q.; Li, Z. Blue AIEgens: Approaches to control the intramolecular conjugation and the optimized performance of OLED devices. J. Mater. Chem. C 2016, 4, 2663–2684.

    Article  CAS  Google Scholar 

  3. Li, Q.; Li, Z. The strong light–emission materials in the aggregated state: What happens from a single molecule to the collective group. Adv. Sci. 2017, 4, 1600484.

    Article  CAS  Google Scholar 

  4. Wu, Y. W.; Qin, A. J.; Tang, B. Z. AIE–active polymers for explosive detection. Chinese J. Polym. Sci. 2017, 35, 141–154.

    Article  CAS  Google Scholar 

  5. Seeboth, A.; Lötzsch, D.; Ruhmann, R.; Muehling, O. Thermochromic polymers—Function by design. Chem. Rev. 2014, 114, 3037–3068.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, D. P.; Miyamato, R.; Shiraishi, Y.; Hirai, T. BODIPY-conjugated thermoresponsive copolymer as a fluorescent thermometer based on polymer microviscosity. Langmuir 2009, 25, 13176–13182.

    Article  CAS  PubMed  Google Scholar 

  7. Yan, Q.; Yuan, J. Y.; Yuan, W. Z.; Zhou, M.; Yin, Y. W.; Pan, C. Y. Copolymer logical switches adjusted through core–shell micelles: From temperature response to fluorescence response. Chem. Commun. 2008, 46, 6188–6190.

    Article  CAS  Google Scholar 

  8. Shiraishi, Y.; Miyamoto, R.; Hirai, T. A hemicyanine–conjugated copolymer as a highly sensitive fluorescent thermometer. Langmuir 2008, 24, 4273–4279.

    Article  CAS  PubMed  Google Scholar 

  9. Gota, C.; Okabe, K.; Funatsu, T.; Harada, Y.; Uchiyama, S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J. Am. Chem. Soc. 2009, 131, 2766–2767.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, L. Y.; Liu, Y. N.; Wang, S. F.; Tao, Y. T.; Wang, F. F.; Zhang, X. W.; Huang, W. Novel hyperbranched polymers as host materials for green thermally activated delayed fluorescence OLEDs. Chinese J. Polym. Sci. 2017, 35, 490–502.

    Article  CAS  Google Scholar 

  11. Chen, J. R.; Zhao, J.; Xu, B. J.; Yang, Z. Y.; Liu, S. W.; Xu, J. R.; Zhang, Y.; Wu, Y. C.; Lv, P. Y.; Chi, Z. G. An AEE–active polymer containing tetraphenylethene and 9,10–distyrylanthracene moieties with remarkable mechanochromism. Chinese J. Polym. Sci. 2017, 35, 282–292.

    Article  CAS  Google Scholar 

  12. Tang, L.; Jin, J. K.; Qin, A. J.; Yuan, W. Z.; Mao, Y.; Mei, J.; Sun, J. Z.; Tang, B. Z. A fluorescent thermometer operating in aggregation–induced emission mechanism: Probing thermal transitions of PNIPAM in water. Chem. Commun. 2009, 33, 4974–4976.

    Article  CAS  Google Scholar 

  13. Guo, Y.; Yu, X.; Xue, W.; Huang, S.; Dong, J.; Wei, L.; Maroncelli, M.; Li, H. Synthesis, structures, and properties of a fluoranthene–based biphenol polymer as a fluorescent nanothermometer. Chem. Eng. J. 2014, 240, 319–330.

    Article  CAS  Google Scholar 

  14. Kim, S.; Torkelson, J. M. Distribution of glass transition temperatures in free–standing, nanoconfined polystyrene films: A test of de Gennes’ sliding motion mechanism. Macromolecules 2011, 44, 4546–4553.

    Article  CAS  Google Scholar 

  15. Pietsch, C.; Vollrath, A.; Hoogenboom, R.; Schubert, U. S. A fluorescent thermometer based on a pyrene–labeled thermoresponsive polymer. Sensors 2010, 10, 7979–7990.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, Z.; Chen, S.; Lam, J. W. Y.; Qin, W.; Kwok, R. T. K.; Xie, N.; Hu, Q. L.; Tang, B. Z. Long–term fluorescent cellular tracing by the aggregates of AIE bioconjugates. J. Am. Chem. Soc. 2013, 135, 8238–8245.

    Article  CAS  PubMed  Google Scholar 

  17. Hu, R.; Kang, Y.; Tang, B. Z. Recent advances in AIE polymers. Polymer J. 2016, 48, 359–370.

    Article  CAS  Google Scholar 

  18. Zhao, W.; Li, C.; Liu, B.; Wang, X.; Li, P.; Wang, Y.; Wu, C.; Yao, C.; Tang, T.; Liu, X. A new strategy to access polymers with aggregation–induced emission characteristics. Macromolecules 2014, 47, 5586–5594.

    Article  CAS  Google Scholar 

  19. Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation–induced emission: Together we shine, united we soar! Chem. Rv. 2015,115,11718–11940.

    Article  CAS  Google Scholar 

  20. Huang, M.; Hsu, C. H.; Wang, J.; Mei, S.; Dong, X.; Li, M.; Liu, H.; Zhang, W.; Aida, T.; Zhang, W. B.; Yue, K.; Cheng, S. Z. D. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science 2015, 348, 424–428.

    Article  CAS  PubMed  Google Scholar 

  21. Bao, S. P.; Wu, Q. H.; Qin, W.; Yu, Q. L.; Wang, J.; Liang, G. D.; Tang, B. Z. Sensitive and reliable detection of glass transition of polymers by fluorescent probes based on AIE luminogens. Polym. Chem. 2015, 6, 3537–3542.

    Article  CAS  Google Scholar 

  22. Mindemark, J.; Bowden, T. Synthesis and polymerization of alkyl halide–functional cyclic carbonates. Polymer 2011, 52, 5716–5722.

    Article  CAS  Google Scholar 

  23. Liang, G. D.; Ren, F.; Gao, H. Y.; Wu, Q.; Zhu, F. M.; Tang, B. Z. Continuously–tunable fluorescent polypeptides through polymer–assisted assembly strategy. Polym. Chem. 2016, 7, 5181.

    Article  CAS  Google Scholar 

  24. Wei, W.; Feng, S.; Zheng, C. X.; Liang, G. D.; Gao, H. Y.; Wu, Q.; Zhu, F. M. Glass transition and quantum yield for fluorescent labelled polystyrene core–forming block in self–assembled nanomicelles of amphiphilic diblock copolymers. J. Polym. Res. 2015, 22, 212.

    Article  CAS  Google Scholar 

  25. Sasaki, T. Melting of poly(e–caprolactone) studied by step–heating calorimetry. J. Therm. Anal. Calorim. 2013, 111, 717–724.

    Article  CAS  Google Scholar 

  26. Liu, C. L.; Lin, M. C.; Chen, H. L.; Műller, A. J. Evolution of crystal orientation in one–dimensionally confined space templated by lamellae–forming block copolymers. Macromolecules 2015, 48, 4451–4460.

    Article  CAS  Google Scholar 

  27. He, W. N.; Zhou, B.; Xu, J. T.; Du, B. Y.; Fan, Z. Q. Two growth modes of semicrystalline cylindrical poly(e–caprolactone)–è–poly(ethylene oxide) micelles. Macromolecules 2012, 45, 9768–9778.

    Article  CAS  Google Scholar 

  28. He, W. N.; Xu, J. T. Crystallization assisted self–assembly of semicrystalline block copolymers. Prog. Polym. Sci. 2012, 37, 1350–1400.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21374136), the Fundamental Research Funds for the Central Universities (Nos. 17lgjc03 and 18lgpy04), and the Opening Project of the Key Laboratory of Polymer Processing Engineering (South China University of Technology, Ministry of Education, No. KFKT1703).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Qin or Guo-Dong Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JL., Zhang, C., Qin, W. et al. Thermoresponsive Fluorescent Semicrystalline Polymers Decorated with Aggregation Induced Emission Luminogens. Chin J Polym Sci 37, 394–400 (2019). https://doi.org/10.1007/s10118-019-2201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2201-8

Keywords

Navigation