Skip to main content
Log in

Melting of poly(ε-caprolactone) studied by step-heating calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study demonstrates that the step-heating calorimetry, which is a kind of temperature-modulated differential scanning calorimetry, can provide valuable information on the polymer melting. Time-dependent heat flow due to the melting of lamellar crystallites in a narrow range of thickness can be directly observed, from which thickness distribution of lamellar crystallites and thickness dependence of the melting kinetics are deduced. A sample of poly(ε-caprolactone) was used as a model material of semi-crystalline polymer, which has high crystallinity (0.79) so that no recrystallization and/or reorganization occur during melting in the step-heating scan. It was revealed that superheating dependence of the melting rate coefficient increases with increasing lamellar thickness, which may be attributed to variation of the fold surface roughness with respect to lamellar thickness. Analysis based on the cylindrical nucleation model revealed much lower free energy values of lateral surface than that evaluated from crystallization behavior, suggesting that the nucleus for melting is more stable than that for crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schawe JEK, Strobl GR. Superheating effects during the melting of crystallites of syndiotactic polypropylene analyzed by the temperature-modulated differential scanning calorimetry. Polymer. 1998;39:3745–51.

    Article  CAS  Google Scholar 

  2. Toda A, Hikosaka M, Yamada K. Superheating of the melting kinetics in polymer crystals: a possible nucleation mechanism. Polymer. 2002;43:1667–79.

    Article  CAS  Google Scholar 

  3. Wurm A, Schick C. Reversing and nonreversing contributions to polymer melting. Colloid Polym Sci. 2003;281:113–22.

    Article  CAS  Google Scholar 

  4. Salmerón Sánchez M, Gómez Ribelles JL, Hernández Sánchez F, Mano JF. On the kinetics of melting and crystallization of poly(l-lactic acid) by TMDSC. Thermochim Acta. 2005;430:201–10.

    Article  Google Scholar 

  5. Rastogi S, Lippits DR, Höhne GWH, Mezari B, Magusin PCMM. The role of the amorphous phase in melting of linear UHMW-PE; implications for chain dynamics. J Phys Cond Mat. 2007;19:205122.

    Article  Google Scholar 

  6. Toda A, Kojima I, Hikosaka M. Melting kinetics of polymer crystals with an entropic barrier. Macromolecules. 2008;41:120–7.

    Article  CAS  Google Scholar 

  7. Yasuniwa M, Sakamo K, Ono Y, Kawahara W. Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer. 2008;49:1943–51.

    Article  CAS  Google Scholar 

  8. Rastogi S, Yao Y, Lippits DR, Höhne GWH, Graf R, Spiess HW, Lemstra PJ. Segmental mobility in the non-crystalline regions of semicrystalline polymers and its implications on melting. Macromol Rapid Commun. 2009;30:826–39.

    Article  Google Scholar 

  9. Pandey A, Toda A, Rastogi S. Influence of amorphous component on melting of semicrystalline polymers. Macromolecules. 2011;44:8042–55.

    Article  CAS  Google Scholar 

  10. Hu W, Frenkel D, Mathot VBF. Free energy barrier to melting of single-chain polymer crystallite. J Chem Phys. 2003;118:3455–7.

    Article  CAS  Google Scholar 

  11. Ren Y, Ma A, Li J, Jiang X, Ma Y, Toda A, Hu W. Melting of polymer single crystals studied by dynamic Monte Carlo simulations. Eur Phys J E. 2010;33:189–202.

    Article  CAS  Google Scholar 

  12. Minakov AA, Mordvintsev DA, Schick C. Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K/s). Polymer. 2004;45:3755–63.

    Article  CAS  Google Scholar 

  13. Minakov AA, van Herwaarden AW, Wien W, Wurm A, Schick C. Advanced nonadiabatic ultrafast nanocalorimetry and superheating phenomenon in linear polymers. Thermochim Acta. 2007;461:96–106.

    Article  CAS  Google Scholar 

  14. Minakov AA, Wurm A, Schick C. Superheating in linear polymers studied by ultrafast nanocalorimetry. Eur Phys J E. 2007;23:43–53.

    Article  CAS  Google Scholar 

  15. Jin ZH, Gumbsch P, Lu K, Ma E. Melting mechanisms at the limit of superheating. Phys Rev Lett. 2001;87:055703.

    Article  CAS  Google Scholar 

  16. Forsblom M, Grimvall G. Homogeneous melting of superheated crystals: molecular dynamics simulations. Phys Rev B. 2005;72:054107.

    Article  Google Scholar 

  17. Pielichowski K, Flejtuch K, Pielichowski J. Step-scan alternating DSC study of melting and crystallisation in poly(ethylene oxide). Polymer. 2004;45:1235–42.

    Article  CAS  Google Scholar 

  18. Armitstead K, Goldbeck-Wood G. Polymer crystallization theories. Adv Polym Sci. 1992;100:219–312.

    Article  CAS  Google Scholar 

  19. Chatani Y, Okita Y, Tadokoro H, Yamashita Y. Structural studies of polyesters. III. Crystal structure of poly-ε-caprolactone. Polym J. 1970;1:555–62.

    Article  CAS  Google Scholar 

  20. Guo Q, Groeninckx G. Crystallization kinetics of poly(ε-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly(ε-caprolactone). Polymer. 2001;42:8647–55.

    Article  CAS  Google Scholar 

  21. Pyda M. Ed. ATHAS Data Bank; http://athas.prz.rzeszow.pl..

  22. Lippits DR, Rastogi S, Höhne GWH. Melting kinetics in polymers. Phys Rev Lett. 2006;96:218303.

    Article  CAS  Google Scholar 

  23. Sohn S, Alizadeh A, Marand H. On the multiple melting behavior of bisphenol-A polycarbonate. Polymer. 2000;41:8879–86.

    Article  CAS  Google Scholar 

  24. Sasaki T, Sunago H, Hoshikawa T. Multiple melting behavior of syndiotactic 1,2-polybutadiene. Polym Eng Sci. 2003;43:629–38.

    Article  CAS  Google Scholar 

  25. Voigt-Martin IG, Peacock AJ, Mandelkern L. A comparison of the Raman LAM and electron microscopy in determining crystallite thickness distributions: polyethylenes with narrow size distributions. J Polym Sci B Polym Phys. 1989;27:957–65.

    Article  CAS  Google Scholar 

  26. Voigt-Martin IG, Mandelkern L. Numerical analysis of lamellar thickness distributions. J Polym Sci B Polym Phys. 1989;27:967–91.

    Article  CAS  Google Scholar 

  27. Lu L, Alamo RG, Mandelkern L. Lamellar thickness distributions in linear polyethylene and ethylene copolymers. Macromolecules. 1994;27:6571–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Hiroyuki Kaneko, Aoto Kakinoki, and Hiroaki Matsuura for help in DSC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, T. Melting of poly(ε-caprolactone) studied by step-heating calorimetry. J Therm Anal Calorim 111, 717–724 (2013). https://doi.org/10.1007/s10973-012-2209-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2209-6

Keywords

Navigation