Skip to main content
Log in

Crystallization, Mechanical and Flame-retardant Properties of Poly(lactic acid) Composites with DOPO and DOPO-POSS

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) composites with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and DOPO-containing polyhedral oligomeric silsesquioxane (DOPO-POSS) were prepared via melting extrusion and injection molding. The crystallization, mechanical, and flame-retardant properties of PLA/DOPO and PLA/DOPO-POSS were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), tensile testing, thermogravimetric analysis (TGA), limiting oxygen index (LOI), and cone calorimeter test. The DSC results showed that the DOPO added could act as a plasticizer as reflected by lower glass transition temperature and inhibited crystallization of part of the PLA; the DOPO-POSS acted like a filler in the PLA matrix and slightly improved the crystallinity of the PLA matrix. The XRD and DSC analyses indicated that the PLA composites by cold molding injection were amorphous, and the PLA composites following a heat treatment in an oven at 120 °C for 30 min achieved crystallinity. All the PLA and its composites after heat treatment had improved mechanical properties. The thermogravimetric analysis (TGA) tests showed that the PLA, DOPO and DOPO-POSS decomposed separately in the PLA/DOPO and PLA/DOPO-POSS, respectively. The cone calorimeter tests offered clear evidence that addition of the DOPO-POSS resulted in an evident reduction of 25% for the peak of heat release rate (p-HRR). It was also confirmed that the crystalline flame-retardant PLA composites after heat treatment had better flame retardant properties than the amorphous PLA composites prepared by the cold molding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. La Mantia, F. P.; Morreale, M. Green composites: a brief review. Composites Part A 2011, 42(6), 579–588.

    Article  CAS  Google Scholar 

  2. Mohanty, A. K.; Misra, M.; Drzal, L. T. Sustainable biocomposites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ. 2002, 10(1), 19–26.

    Article  CAS  Google Scholar 

  3. de Azeredo, H. M. C. Nanocomposites for food packaging applications. Food. Res. Int. 2009, 42(9), 1240–1253.

    Article  CAS  Google Scholar 

  4. Carrasco, F.; Pagès, P.; Gámez-Pérez, J.; Santana, O. O.; Maspoch, M. L. Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 2010, 95(2), 116–125.

    Article  CAS  Google Scholar 

  5. Ye, L.; Ren, J.; Cai, S. Y; Wang, Z. G.; Li, J. B. Poly(lactic acid) nanocomposites with improved flame retardancy and impact strength by combining of phosphinates and organoclay. Chinese. J. Polym. Sci. 2016, 34(6), 785–796.

    Article  CAS  Google Scholar 

  6. Ye, H.; Hou, K.; Zhou, Q. Improve the thermal and mechanical properties of poly(L-lactide) by forming nanocomposites with pristine vermiculite. Chinese J. Polym. Sci. 2016, 34(1), 1–12.

    Article  CAS  Google Scholar 

  7. Srithep, Y.; Nealey, P.; Turng, L. S. Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid). Polym. Eng. Sci. 2013, 53(3), 580–588.

    Article  CAS  Google Scholar 

  8. Lv, S.; Gu, J.; Cao, J.; Tan, H.; Zhang, Y. Effect of annealing on the thermal properties of poly(lactic acid)/starch blends. Int. J. Biol. Macromol. 2015, 74, 297–303.

    Article  CAS  PubMed  Google Scholar 

  9. Pérez-Fonseca, A. A.; Robledo-Ortíz, J. R.; González-Núñez, R.; Rodrigue, D. Effect of thermal annealing on the mechanical and thermal properties of polylactic acid–cellulosic fiber biocomposites. J. Appl. Polym. Sci. 2016, DOI: 10.1002/app.43750.

    Google Scholar 

  10. Gu, L.; Qiu, J.; Sakai, E. Effect of DOPO-containing flame retardants on poly(lactic acid): non-flammability, mechanical properties and thermal behaviors. Chem. Res. Chin. Univ. 2017, 33(1), 143–149.

    Article  CAS  Google Scholar 

  11. Jiang, P.; Gu, X.; Zhang, S.; Wu, S.; Zhao, Q.; Hu, Z. Synthesis, characterization, and utilization of a novel phosphorus/nitrogen-containing flame retardant. Ind. Eng. Chem. Res. 2015, 54(11), 2974–2982.

    Article  CAS  Google Scholar 

  12. Yu, T.; Tuerhongjiang, T.; Sheng, C.; Li, Y. Phosphoruscontaining diacid and its application in jute/poly(lactic acid) composites: Mechanical, thermal and flammability properties. Composites Part A 2017, 97, 60–66.

    Article  CAS  Google Scholar 

  13. Sirin, H.; Kodal, M.; Ozkoc, G. The influence of POSS type on the properties of PLA. Polym. Compos. 2016, 37(5), 1497–1506.

    Article  CAS  Google Scholar 

  14. Tang, L.; Qiu, Z. Effect of poly(ethylene glycol)-polyhedral oligomeric silsesquioxanes on the thermal and mechanical properties of biodegradable poly(L-lactide). Compos. Commun. 2017, 3, 11–13.

    Article  Google Scholar 

  15. Turan, D.; Sirin, H.; Ozkoc, G. Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and Plasticised PLA. J. Appl. Polym. Sci. 2011, 121(2), 1067–1075.

    Article  CAS  Google Scholar 

  16. Xuan, S.; Hu, Y.; Song, L.; Wang, X.; Yang, H.; Lu, H. Synergistic effect of polyhedral oligomeric silsesquioxane on the flame retardancy and thermal degradation of intumescent flame retardant polylactide. Combust. Sci. Technol. 2012, 184(4), 456–468.

    Article  CAS  Google Scholar 

  17. Qiu, Z.; Pan, H. Preparation, crystallization and hydrolytic degradation of biodegradable poly(L-lactide)/polyhedral oligomeric silsesquioxanes nanocomposite. Compos. Sci. Technol. 2010, 70(7), 1089–1094.

    Article  CAS  Google Scholar 

  18. Baldi, F.; Bignotti, F.; Fina, A.; Tabuani, D.; Riccò, T. Mechanical characterization of polyhedral oligomeric silsesquioxane/polypropylene blends. J. Appl. Polym. Sci. 2007, 105(2), 935–943.

    Article  CAS  Google Scholar 

  19. Wang, X.; Xuan, S.; Song, L.; Yang, H.; Lu, H.; Hu, Y. Synergistic effect of POSS on mechanical properties, flammability, and thermal degradation of intumescent flame retardant polylactide composites. J. Macromol. Sci. Part B Phys. 2012, 51(2), 255–268.

    Article  CAS  Google Scholar 

  20. Zhang, W.; Yang, R. Synthesis of phosphorus-containing polyhedral oligomeric silsesquioxanes via hydrolytic condensation of a modified silane. J. Appl. Polym. Sci. 2011, 122(5), 3383–3389.

    Article  CAS  Google Scholar 

  21. Zhang, W.; Li, X.; Guo, X.; Yang, R. Mechanical and thermal properties and flame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane (DOPOPOSS)/ polycarbonate composites. Polym. Degrad. Stab. 2010, 95(12), 2541–2546.

    Article  CAS  Google Scholar 

  22. Tsuji, H.; Ikada, Y. Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol. Chem. Phys. 1996, 197(10), 3483–3499.

    Article  CAS  Google Scholar 

  23. Yang, G. Z.; Chen, X.; Wang, W.; Wang, M.; Liu, T.; Li, C.Z. Nonisothermal crystallization and melting behavior of a luminescent conjugated polymer, poly(9,9-dihexylfluorene-altco- 2,5-didecyloxy-1,4-phenylene). J. Polym. Sci., Part B: Polym. Phys. 2007, 45(8), 976–987.

    Article  CAS  Google Scholar 

  24. Gumus, S.; Ozkoc, G.; Aytac, A. Plasticized and unplasticized PLA/organoclay nanocomposites: short- and long-term thermal properties, morphology, and nonisothermal crystallization behavior. J. Appl. Polym. Sci. 2012, 123(5), 2837–2848.

    Article  CAS  Google Scholar 

  25. Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J. Disorder-to-order phase transition and multiple melting behavior of poly(Llactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 2008, 41(4), 1352–1357.

    Article  CAS  Google Scholar 

  26. Schartel, B.; Hull, T. R. Development of fire-retarded materials—Interpretation of cone calorimeter data. Fire Mater. 2007, 31(5), 327–354.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Jie Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, L., Zhang, WC., Tong, B. et al. Crystallization, Mechanical and Flame-retardant Properties of Poly(lactic acid) Composites with DOPO and DOPO-POSS. Chin J Polym Sci 36, 871–879 (2018). https://doi.org/10.1007/s10118-018-2098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2098-7

Keywords

Navigation