Skip to main content

Advertisement

Log in

Recent Advances in Self-assembled Nano-therapeutics

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The applications of nanotechnology in biomedicine have gained considerable attentions in recent years owing to the great enhancement of therapeutic efficiency. Integration of self-assembly into nanotechnology has brought tremendous convenience during the formation of nano-carriers. Based on distinctive methods of self-assembly, nano-therapeutics have been developed to an impressive stage with the ability to perform site-specific delivery with temporal and spatial control. This review focuses on the recent advances in the preparing methods for nano-therapeutics, and their applications in the treatments of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salomon, J. A.; Wang, H.; Freeman, M. K. Healthy life expectancy for 187 countries, 1990–2010: a systematic analysis for the global burden of disease study. Lancet 2013, 381(9867), 628–628

    Google Scholar 

  2. Porter, R. The nature of suffering and the goals of medicine. Hist. Phil. Life Sci. 1997, 19(2), 297–298

    Google Scholar 

  3. Liu, Y.; Li, J.; Lu, Y. Enzyme therapeutics for systemic detoxification. Adv. Drug Deliv Rev. 2015, 90(1), 24–39

    Article  CAS  PubMed  Google Scholar 

  4. Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer. 2006, 6(9), 688–701

    Article  CAS  PubMed  Google Scholar 

  5. Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano. 2009, 3(1), 16–20

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, L.; Gu, F. X.; Chan, J. M.; Wang, A. Z. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008, 83(5), 761–769

    Article  CAS  PubMed  Google Scholar 

  7. Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 2005, 5(3), 161–171

    Article  CAS  PubMed  Google Scholar 

  8. Singh, K. K. Nanotechnology in cancer detection and treatment. Technol. Cancer Res. T. 2005, 4(6), 583–583

    Article  Google Scholar 

  9. Couvreur, P.; Vauthier, C. Nanotechnology: intelligent design to treat complex disease. Pharm. Res. 2006, 23(7), 1417–1450

    Article  CAS  PubMed  Google Scholar 

  10. Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Delivery Rev. 2014, 66(1), 2–25

    Article  CAS  Google Scholar 

  11. Ozin, G. A.; Hou, K.; Lotsch, B. V.; Cademartiri, L. Nanofabrication by self-assembly. Mater. Today 2009, 12(5), 12–23

    Article  CAS  Google Scholar 

  12. Mastrangeli, M.; Abbasi, S.; Varel, C.; Van Hoof, C. Self-assembly from milli-to nanoscales: methods and applications. J. Micromech Microeng. 2009, 19(8), DOI: 10.1088/0960-1317/19/8/083001

    Google Scholar 

  13. Bishop, K. J.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5(14), 1600–1630

    Article  CAS  PubMed  Google Scholar 

  14. Peer, D.; Karp, J. M.; Hong, S.; FaroKhzad, O. C. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2(12), 751–760

    Article  CAS  PubMed  Google Scholar 

  15. Letchford, K.; Burt, H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 2007, 65(3), 259–269

    Article  CAS  PubMed  Google Scholar 

  16. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 2005, 437(7059), 640–647

    Article  CAS  PubMed  Google Scholar 

  17. Wang, C.; Wang, Z.; Zhang, X. Amphiphilic building blocks for self-assembly: From amphiphiles to supra-amphiphiles. Acc. Chem. Res. 2012, 45(4), 608–618

    Article  CAS  PubMed  Google Scholar 

  18. Hill, J. P.; Shrestha, L. K.; Ishihara, S.; Ji, Q. Self-assembly: from amphiphiles to chromophores and beyond. Molecules 2014, 19(6), 8589–8609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rösler, A.; Vandermeulen, G. W. M.; Klok, H. A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliver. Rev. 2012, 64(1), 270–279

    Article  Google Scholar 

  20. Xiong, X. B.; Binkhathlan, Z.; Molavi, O.; Lavasanifar, A. Amphiphilic block co-polymers: Preparation and application in nanodrug and gene delivery. Acta Biomater. 2012, 8(6), 2017–2033

    Article  CAS  PubMed  Google Scholar 

  21. Aziz, Z. A. B. A.; Ahmad, A.; Mohd-Setapar, S. H.; Hassan, H. Recent advances in drug delivery of polymeric nano-micelles. Curr. Drug Metab. 2017, 18(1), 16–29

    Article  CAS  PubMed  Google Scholar 

  22. Allain, V.; Bourgaux, C.; Couvreur, P. Self-assembled nucleolipids: From supramolecular structure to soft nucleic acid and drug delivery devices. Nucleic Acids Res. 2012, 40(5), 1891–1903

    Article  CAS  PubMed  Google Scholar 

  23. Chen, Y.; Liang, G. Enzymatic self-assembly of nanostructures for theranostics. Theranostics 2012, 2(2), 139–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41(18), 5969–5985

    Article  CAS  PubMed  Google Scholar 

  25. Kim, J. K.; Yang, S. Y.; Lee, Y.; Kim, Y. Functional nanomaterials based on block copolymer self-assembly. Prog. Polym. Sci. 2010, 35(11), 1325–1349

    Article  CAS  Google Scholar 

  26. Zhang, Z.; Ma, R.; Shi, L. Cooperative macromolecular self-assembly toward polymeric assemblies with multiple and bioactive functions. Acc. Chem. Res. 2014, 47(4), 1426–1437

    Article  CAS  PubMed  Google Scholar 

  27. Wu, W.; Wu, D.; Li, S.; Lin, Z. Doxorubicin loaded ph-sensitive micelles for potential tumor therapy. J. Control. Release 2013, 172(1), e72–E73

    Article  CAS  Google Scholar 

  28. Cheng, T.; Ma, R.; Zhang, Y.; Ding, Y. A surface-adaptive nanocarrier to prolong circulation time and enhance cellular uptake. Chem. Commun. 2015, 51(81), 14985–14988

    Article  CAS  Google Scholar 

  29. Breus, V. V.; Heyes, C. D.; Tron, K.; Nienhaus, G. U. Zwitterionic biocompatible quantum dots for wide ph stability and weak nonspecific binding to cells. ACS Nano 2009, 3(9), 2573–2580

    Article  CAS  PubMed  Google Scholar 

  30. Arvizo, R. R.; Miranda, O. R.; Thompson, M. A.; Pabelick, C. M. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 2010, 10(7), 2543–2548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Deshpande, M. C.; Davies, M. C.; Garnett, M. C.; Williams, P. M. The effect of poly(ethylene glycol) molecular architecture on cellular interaction and uptake of DNA complexes. J. Control. Release 2004, 97(1), 143–156

    Article  CAS  PubMed  Google Scholar 

  32. Yuan, Y. Y.; Mao, C. Q.; Du, X. J.; Du, J. Z. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv. Mater. 2012, 24(40), 5476–5480

    Article  CAS  PubMed  Google Scholar 

  33. Du, J. Z.; Sun, T. M.; Song, W. J.; Wu, J. A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery. Angew. Chem. Int. Ed. 2010, 49(21), 3621–3626

    Article  CAS  Google Scholar 

  34. Xiong, M. H.; Bao, Y.; Yang, X. Z.; Wang, Y. C. Lipase-sensitive polymeric triple-layered nanogel for "on-demand" drug delivery. J. Am. Chem. Soc. 2012, 134(9), 4355–4362

    Article  CAS  PubMed  Google Scholar 

  35. Du, J. Z.; Du, X. J.; Mao, C. Q.; Wang, J. Tailor-made dual ph-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc. 2011, 133(44), 17560–17563

    Article  CAS  PubMed  Google Scholar 

  36. Pereverzeva, E.; Treschalin, I.; Bodyagin, D.; Maksimenko, O. Intravenous tolerance of a nanoparticle-based formulation of doxorubicin in healthy rats. Toxicol. Lett. 2008, 178(1), 9–19

    Article  CAS  PubMed  Google Scholar 

  37. Harker, W. G.; Sikic, B. I. Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line mes-sa. Cancer Res. 1985, 45(9), 4091–4096

    CAS  PubMed  Google Scholar 

  38. Cheng, T.; Liu, J.; Ren, J.; Huang, F. Green tea catechin-based complex micelles combined with doxorubicin to overcome cardiotoxicity and multidrug resistance. Theranostics 2016, 6(9), 1277–1292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sharma, A.; Sharma, U. S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharmaceut. 1997, 154(2), 123–140

    Article  CAS  Google Scholar 

  40. Wang, Y.; Miao, L.; Satterlee, A.; Huang, L. Delivery of oligonucleotides with lipid nanoparticles. Adv. Drug Deliver. Rev. 2015, 87(1), 68–80

    Article  CAS  Google Scholar 

  41. Goins, B.; Phillips, W. T.; Bao, A. Strategies for improving the intratumoral distribution of liposomal drugs in cancer therapy. Expert Opin. Drug Deliver. 2016, 13(6), 873–889

    CAS  Google Scholar 

  42. Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S. Y. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015, 6, DOI:10.3389/fphar.2015.00286

  43. Barenholz, Y. Liposome application: Problems and prospects. Curr. Opin. Colloid Interface Sci. 2001, 6(1), 66–77

    CAS  Google Scholar 

  44. Kraft, J. C.; Freeling, J. P.; Wang, Z.; Ho, R. J. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci. 2014, 103(1), 29–52

    Article  CAS  PubMed  Google Scholar 

  45. Chang, H. I.; Yeh, M. K. Clinical development of liposome-based drugs: Formulation, characterization, and therapeutic efficacy. Int. J. Nanomed. 2012, 7(1), 49–60

    CAS  Google Scholar 

  46. Yang, F.; Jin, C.; Jiang, Y.; Li, J. Liposome based delivery systems in pancreatic cancer treatment: From bench to bedside. Cancer Treat Rev. 2011, 37(8), 633–642

    Article  CAS  PubMed  Google Scholar 

  47. Mo, R.; Jiang, T.; Gu, Z. Recent progress in multidrug delivery to cancer cells by liposomes. Nanomedicine 2014, 9(8), 1117–1120

    Article  CAS  PubMed  Google Scholar 

  48. Immordino, M. L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed. 2006, 1(3), 297–315

    Article  CAS  Google Scholar 

  49. Wang, H.; Zhang, S.; Liao, Z.; Wang, C. Peglated magnetic polymeric liposome anchored with tat for delivery of drugs across the blood-spinal cord barrier. Biomaterials 2010, 31(25), 6589–6596

    Article  CAS  PubMed  Google Scholar 

  50. Suntres, Z. E. Liposomal antioxidants for protection against oxidant-induced damage. J. Toxicol. 2011, DOI:10.1155/2011/152474

    Google Scholar 

  51. Zhang, X.; Guo, S.; Fan, R.; Yu, M. Dual-functional liposome for tumor targeting and overcoming multidrug resistance in hepatocellular carcinoma cells. Biomaterials 2012, 33(29), 7103–7114

    Article  CAS  PubMed  Google Scholar 

  52. Wang, H.; Zhao, P.; Su, W.; Wang, S. PLGA/polymeric liposome for targeted drug and gene co-delivery. Biomaterials 2010, 31(33), 8741–8748

    Article  CAS  PubMed  Google Scholar 

  53. Jiang, T.; Mo, R.; Bellotti, A.; Zhou, J. Gel-liposome-mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv. Funct. Mater. 2014, 24(16), 2295–2304

    Article  CAS  Google Scholar 

  54. Mo, R.; Jiang, T. Y.; Gu, Z. Enhanced anticancer efficacy by atp-mediated liposomal drug delivery. Angew. Chem. Int Ed. 2014, 53(23), 5815–5820

    Article  CAS  Google Scholar 

  55. Schafer, J.; Hobel, S.; Bakowsky, U.; Aigner, A. Liposome-polyethylenimine complexes for enhanced DNA and sirna delivery. Biomaterials 2010, 31(26), 6892–6900

    Article  CAS  PubMed  Google Scholar 

  56. Rengan, A. K.; Bukhari, A. B.; Pradhan, A.; Malhotra, R. In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett. 2015, 15(2), 842–848

    Article  CAS  PubMed  Google Scholar 

  57. Hubbell, J. A.; Chilkoti, A. Nanomaterials for drug delivery. Science 2012, 337(6092), 303–305

    Article  PubMed  Google Scholar 

  58. Park, J. H.; Lee, S.; Kim, J. H.; Park, K. Polymeric nanomedicine for cancer therapy. Prog. Polym. Sci. 2008, 33(1), 113–137

    Article  CAS  Google Scholar 

  59. Tong, R.; Cheng, J. Anticancer polymeric nanomedicines. Polym. Rev. 2007, 47(3), 345–381

    Article  CAS  Google Scholar 

  60. Huang, P.; Wang, D.; Su, Y.; Huang, W. Combination of small molecule prodrug and nanodrug delivery: Amphiphilic drug-drug conjugate for cancer therapy. J. Am. Chem. Soc. 2014, 136(33), 11748–56

    Article  CAS  PubMed  Google Scholar 

  61. Hu, M.; Huang, P.; Wang, Y.; Su, Y. Synergistic combination chemotherapy of camptothecin and floxuridine through self-assembly of amphiphilic drug-drug conjugate. Bioconjugate. Chem. 2015, 26(12), 2497–2506

    Article  CAS  Google Scholar 

  62. Zhang, T.; Huang, P.; Shi, L.; Su, Y. Self-assembled nanoparticles of amphiphilic twin drug from floxuridine and bendamustine for cancer therapy. Mol. Pharm. 2015, 12(7), 2328–2336

    Article  CAS  PubMed  Google Scholar 

  63. Ma, Y.; Mou, Q.; Sun, M.; Yu, C. Cancer theranostic nanoparticles self-assembled from amphiphilic small molecules with equilibrium shift-induced renal clearance. Theranostics 2016, 6(10), 1703–1716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Mou, Q.; Ma, Y.; Zhu, X.; Yan, D. A small molecule nanodrug consisting of amphiphilic targeting ligand-chemotherapy drug conjugate for targeted cancer therapy. J. Control. Release 2016, 230(1), 34–44

    Article  CAS  PubMed  Google Scholar 

  65. Wang, Y.; Huang, P.; Hu, M.; Huang, W. Self-delivery nanoparticles of amphiphilic methotrexate-gemcitabine prodrug for synergistic combination chemotherapy via effect of deoxyribonucleotide pools. Bioconjugate. Chem. 2016, 27(11), 2722–2733

    Article  CAS  Google Scholar 

  66. Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4(7), 581–93

    Article  CAS  PubMed  Google Scholar 

  67. Xu, Z. P.; Zeng, Q. H.; Lu, G. Q.; Yu, A. B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng. Sci. 2006, 61(3), 1027–1040

    Article  CAS  Google Scholar 

  68. Lacerda, L.; Raffa, S.; Prato, M.; Bianco, A. Cell-penetrating cnts for delivery of therapeutics. Nano Today 2007, 2(6), 38–43

    Article  Google Scholar 

  69. Mao, S.; Sun, W.; Kissel, T. Chitosan-based formulations for delivery of DNA and sirna. Adv. Drug Deliver. Rev. 2010, 62(1), 12–27

    Article  CAS  Google Scholar 

  70. Chapel, J. P.; Berret, J. F. Versatile electrostatic assembly of nanoparticles and polyelectrolytes: Coating, clustering and layer-by-layer processes. Curr. Opin. Colloid Interface Sci. 2012, 17(2), 97–105

    Article  CAS  Google Scholar 

  71. Shmueli, R. B.; Anderson, D. G.; Green, J. J. Electrostatic surface modifications to improve gene delivery. Expert Opin. Drug Deliver. 2010, 7(4), 535–550

    Article  CAS  Google Scholar 

  72. Mulligan, R. C. The basic science of gene therapy. Science 1993, 260(5110), 926–32

    Article  CAS  PubMed  Google Scholar 

  73. Liu, Y.; Du, J.; Choi, J. S.; Chen, K. J. A high-throughput platform for formulating and screening multifunctional nanoparticles capable of simultaneous delivery of genes and transcription factors. Angew. Chem. Int. Ed. 2016, 55(1), 169–173

    Article  CAS  Google Scholar 

  74. Verma, I. M.; Somia, N. Gene therapy—promises, problems and prospects. Nature 1997, 389(6648), 239–42

    Article  CAS  PubMed  Google Scholar 

  75. Kircheis, R.; Wightman, L.; Wagner, E. Design and gene delivery activity of modified polyethylenimines. Adv. Drug Deliver. Rev. 2001, 53(3), 341–358

    Article  CAS  Google Scholar 

  76. Harris, T. J.; Green, J. J.; Fung, P. W.; Langer, R. Tissue-specific gene delivery via nanoparticle coating. Biomaterials 2010, 31(5), 998–1006

    Article  CAS  PubMed  Google Scholar 

  77. Liu, Y.; Wang, H.; Kamei, K. I.; Yan, M. Delivery of intact transcription factor by using self-assembled supramolecular nanoparticles. Angew. Chem. Int. Ed. 2011, 50(13), 3058–3062

    Article  CAS  Google Scholar 

  78. Won, Y. W.; Adhikary, P. P.; Lim, K. S.; Kim, H. J. Oligopeptide complex for targeted non-viral gene delivery to adipocytes. Nat. Mater. 2014, 13(12), 1157–1164

    Article  CAS  PubMed  Google Scholar 

  79. Ariga, K.; Lvov, Y. M.; Kawakami, K.; Ji, Q. Layer-by-layer self-assembled shells for drug delivery. Adv. Drug Deliver. Rev. 2011, 63(9), 762–771

    Article  CAS  Google Scholar 

  80. Ariga, K.; Yamauchi, Y.; Rydzek, G.; Ji, Q. Layer-by-layer nanoarchitectonics: Invention, innovation, and evolution. Chem Lett. 2014, 43(1), 36–68

    Article  CAS  Google Scholar 

  81. Fujii, N.; Fujimoto, K.; Michinobu, T.; Akada, M. The simplest layer-by-layer assembly structure: Best paired polymer electrolytes with one charge per main chain carbon atom for multi layered thin films. Macromolecules 2010, 43(8), 3947–3955

    Article  CAS  Google Scholar 

  82. Lvov, Y.; Onda, M.; Ariga, K.; Kunitake, T. Ultrathin films of charged polysaccharides assembled alternately with linear polyions. J. Biomat. Sci. Polym. E 1998, 9(4), 345–355

    Article  CAS  Google Scholar 

  83. Katagiri, K.; Hamasaki, R.; Ariga, K.; Kikuchi, J. Layered paving of vesicular nanoparticles formed with cerasome as a bioinspired organic-inorganic hybrid. J. Am. Chem. Soc. 2002, 124(27), 7892–7893

    Article  CAS  PubMed  Google Scholar 

  84. Elbakry, A.; Zaky, A.; Liebkl, R.; Rachel, R. Layer-by-layer assembled gold nanoparticles for sirna delivery. Nano Lett. 2009, 9(5), 2059–2064

    Article  CAS  PubMed  Google Scholar 

  85. Saurer, E. M.; Flessner, R. M.; Sullivan, S. P.; Prausnitz, M. R. Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin. Biomacromolecules 2010, 11(11), 3136–3143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Morton, S. W.; Shah, N. J.; Quadir, M. A.; Deng, Z. J. Osteotropic therapy via targeted layer-by-layer nanoparticles. Adv. Healthc. Mater. 2014, 3(6), 867–75

    Article  CAS  PubMed  Google Scholar 

  87. Shutava, T. G.; Balkundi, S. S.; Vangala, P.; Steffan, J. J. Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano 2009, 3(7), 1877–1885

    Article  CAS  PubMed  Google Scholar 

  88. Agarwal, A.; Lvov, Y.; Sawant, R.; Torchilin, V. Stable nanocolloids of poorly soluble drugs with high drug content prepared using the combination of sonication and layer-by-layer technology. J. Control. Release 2008, 128(3), 255–260

    Article  CAS  PubMed  Google Scholar 

  89. Pargaonkar, N.; Lvov, Y. M.; Li, N.; Steenekamp, J. H. Controlled release of dexamethasone from microcapsules produced by polyelectrolyte layer-by-layer nanoassembly. Pharm. Res. 2005, 22(5), 826–835

    Article  CAS  PubMed  Google Scholar 

  90. Deng, Z. J.; Morton, S. W.; Ben-Akiva, E.; Dreaden, E. C. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and sirna for potential triple-negative breast cancer treatment. ACS Nano 2013, 7(11), 9571–9584

    Article  CAS  PubMed  Google Scholar 

  91. Poon, Z.; Chang, D.; Zhao, X.; Hammond, P. T. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano 2011, 5(6), 4284–4292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Kim, B. S.; Park, S. W.; Hammond, P. T. Hydrogen-bonding layer-by-layer assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces. ACS Nano 2008, 2(2), 386–392

    Article  CAS  PubMed  Google Scholar 

  93. Ma, X.; Zhao, Y. Biomedical applications of supramolecular systems based on host-guest interactions. Chem. Rev. 2015, 115(15), 7794–7839

    Article  CAS  PubMed  Google Scholar 

  94. Karim, A. A.; Dou, Q.; Li, Z.; Loh, X. J. Emerging supramolecular therapeutic carriers based on host-guest interactions. Chem. Asian J. 2016, 11(9), 1300–1321

    Article  CAS  PubMed  Google Scholar 

  95. Hu, J.; Liu, S. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications. Acc. Chem. Res. 2014, 47(7), 2084–2095

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, J.; Ma, P. X. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective. Adv. Drug Deliver. Rev. 2013, 65(9), 1215–1233

    Article  CAS  Google Scholar 

  97. Wang, L.; Li, L. L.; Fan, Y. S.; Wang, H. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics. Adv. Mater. 2013, 25(28), 3888–3898

    Article  CAS  PubMed  Google Scholar 

  98. Challa, R.; Ahuja, A.; Ali, J.; Khar, R. K. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech. 2005, 6(2), e329–E357

    Article  PubMed Central  PubMed  Google Scholar 

  99. Stella, V. J.; Rajewski, R. A. Cyclodextrins: Their future in drug formulation and delivery. Pharm. Res-Dordr. 1997, 14(5), 556–567

    Article  CAS  Google Scholar 

  100. Gref, R.; Amiel, C.; Molinard, K.; Daoud-Mahammed, S. New self-assembled nanogels based on host-guest interactions: Characterization and drug loading. J. Control. Release 2006, 111(3), 316–324

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, J.; Ma, P. X. Polymeric core-shell assemblies mediated by host-guest interactions: versatile nanocarriers for drug delivery. Angew. Chem. Int. Ed. 2009, 48(5), 964–968

    Article  CAS  Google Scholar 

  102. Hu, Q. D.; Tang, G. P.; Chu, P. K. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: from design to applications. Acc. Chem. Res. 2014, 47(7), 2017–2025

    Article  CAS  PubMed  Google Scholar 

  103. Wang, H.; Wang, S.; Su, H.; Chen, K. J. A supramolecular approach for preparation of size-controlled nanoparticles. Angew. Chem. Int. Ed. 2009, 48(24), 4344–4318

    Article  CAS  Google Scholar 

  104. Ang, C.Y.; Tan, S. Y.; Wang, X.; Zhang, Q. Supramolecular nanoparticle carriers self-assembled from cyclodextrin-and adamantane-functionalized polyacrylates for tumor-targeted drug delivery. J. Mater. Chem. B 2014, 2(13), 1879–1890

    Article  CAS  PubMed  Google Scholar 

  105. Qu, D. H.; Wang, Q. C.; Zhang, Q. W.; Ma, X. Photoresponsive host-guest functional systems. Chem. Rev. 2015, 115(15), 7543–7588

    Article  CAS  PubMed  Google Scholar 

  106. Dan, Z.; Cao, H.; He, X.; Zeng, L. Biological stimuli-responsive cyclodextrin-based host-guest nanosystems for cancer therapy. Int. J. Pharm. 2015, 483(1-2), 63–68

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, W.; Li, Y.; Sun, J. H.; Tan, C. P. Supramolecular self-assembled nanoparticles for chemo-photodynamic dual therapy against cisplatin resistant cancer cells. Chem. Commun. 2015, 51(10), 1807–1810

    Article  CAS  Google Scholar 

  108. Wang, Y.; Li, D.; Jin, Q.; Ji, J. pH-responsive supramolecular prodrug micelles based on cucurbit 8 uril for intracellular drug delivery. J Control. Release 2015, 213(1), e134–E135

    Article  Google Scholar 

  109. Yu, G.; Jie, K.; Huang, F. Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem. Rev. 2015, 115(15), 7240–7303

    Article  CAS  PubMed  Google Scholar 

  110. Yang, B.; Dong, X.; Lei, Q.; Zhuo, R. Host-guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs. ACS Appl. Mater. Interfaces 2015, 7(39), 22084–22094

    Article  CAS  PubMed  Google Scholar 

  111. Liu, Y.; Yu, C.; Jin, H.; Jiang, B. A supramolecular janus hyperbranched polymer and its photoresponsive self-assembly of vesicles with narrow size distribution. J. Am. Chem. Soc. 2013, 135(12), 4765–4770

    Article  CAS  PubMed  Google Scholar 

  112. Li, Y.; Liu, Y.; Ma, R.; Xu, Y. A g-quadruplex hydrogel via multicomponent self-assembly: Formation and zero-order controlled release. ACS Appl. Mater. Interfaces 2017, 9(15), 13056–13067

    Article  CAS  PubMed  Google Scholar 

  113. Zhao, L.; Qu, R.; Li, A.; Ma, R. Cooperative self-assembly of porphyrins with polymers possessing bioactive functions. Chem. Commun. 2016, 52(93), 13543–13555

    Article  CAS  Google Scholar 

  114. Gu, Z.; Biswas, A.; Zhao, M.; Tang, Y. Tailoring nanocarriers for intracellular protein delivery. Chem. Soc. Rev. 2011, 40(7), 3638–3655

    Article  CAS  PubMed  Google Scholar 

  115. Yan, M.; Ge, J.; Liu, Z.; Ouyang, P. Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. J. Am. Chem. Soc. 2006, 128(34), 11008–11009

    Article  CAS  PubMed  Google Scholar 

  116. Yan, M.; Du, J.; Gu, Z.; Liang, M. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat. Nanotechnol. 2010, 5(1), 48–53

    Article  CAS  PubMed  Google Scholar 

  117. Gu, Z.; Yan, M.; Hu, B.; Joo, K. I. Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett. 2009, 9(12), 4533–4538

    Article  CAS  PubMed  Google Scholar 

  118. Wen, J.; Anderson, S. M.; Du, J.; Yan, M. Controlled protein delivery based on enzyme-responsive nanocapsules. Adv. Mater. 2011, 23(39), 4549–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Liang, S.; Liu, Y.; Jin, X.; Liu, G. Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Res. 2016, 9(4), 1022–1031

    Article  CAS  Google Scholar 

  120. Zhao, M.; Hu, B.; Gu, Z.; Joo, K. I. Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex. Nano Today 2013, 8(1), 11–20

    Article  CAS  Google Scholar 

  121. Tian, H.; Du, J.; Wen, J.; Liu, Y. Growth-factor nanocapsules that enable tunable controlled release for bone regeneration. ACS Nano 2016, 10(8), 7362–7369

    Article  CAS  PubMed  Google Scholar 

  122. Liu, C.; Wen, J.; Meng, Y.; Zhang, K. Efficient delivery of therapeutic mirna nanocapsules for tumor suppression. Adv. Mater. 2015, 27(2), 292–297

    Article  CAS  PubMed  Google Scholar 

  123. Peer, D.; Karp, J. M.; Hong, S.; FaroKHzad, O. C. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2(12), 751–760

    Article  CAS  PubMed  Google Scholar 

  124. Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010, 62(2), 90–99

    Article  CAS  PubMed  Google Scholar 

  125. DeSantis, C. E.; Lin, C. C.; Mariotto, A. B.; Siegel, R. L. Cancer treatment and survivorship statistics, 2014. CA: A Cancer Journal for Clinicians 2014, 64(4), 252–271

    Google Scholar 

  126. Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 2014, 53(46), 12320–12364

    CAS  Google Scholar 

  127. Liu, Y.; Li, J.; Lu, Y. F. Enzyme therapeutics for systemic detoxification. Adv. Drug Deliver. Rev. 2015, 90, 24–39

    Article  CAS  Google Scholar 

  128. Bae, Y. H.; Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release 2011, 153(3), 198–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. LaVan, D. A.; McGuire, T.; Langer, R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 2003, 21(10), 1184–1191

    Article  CAS  PubMed  Google Scholar 

  130. Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126(3), 187–204

    Article  CAS  PubMed  Google Scholar 

  131. Wang, G.; Uludag, H. Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opin. Drug Deliver. 2008, 5(5), 499–515

    Article  CAS  Google Scholar 

  132. Gao, H.; Cheng, T.; Liu, J.; Liu, J. Self-regulated multifunctional collaboration of targeted nanocarriers for enhanced tumor therapy. Biomacromolecules 2014, 15(10), 3634–3642

    Article  CAS  PubMed  Google Scholar 

  133. Shuhendler, A. J.; Prasad, P.; Leung, M.; Rauth, A. M. A novel solid lipid nanoparticle formulation for active targeting to tumor alpha(v)beta(3) integrin receptors reveals cyclic rgd as a double-edged sword. Adv. Healthc. Mater. 2012, 1(5), 600–608

    Article  CAS  PubMed  Google Scholar 

  134. Cheng, T. J.; Ma, R. J.; Zhang, Y. M.; Ding, Y. X. A surface-adaptive nanocarrier to prolong circulation time and enhance cellular uptake. Chem. Commun. 2015, 51(81), 14985–14988

    Article  CAS  Google Scholar 

  135. Falamarzian, A.; Lavasanifar, A. Optimization of the hydrophobic domain in poly(ethylene oxide)- poly(epsilon-caprolactone) based nano-carriers for the solubilization and delivery of amphotericin b. Colloids and Surfaces B-Biointerfaces 2010, 81(1), 313–320

    Article  CAS  PubMed  Google Scholar 

  136. Gao, H. J.; Xiong, J.; Cheng, T. J.; Liu, J. J. In vivo biodistribution of mixed shell micelles with tunable hydrophilic/hydrophobic surface. Biomacromolecules 2013, 14(2), 460–467

    Article  CAS  PubMed  Google Scholar 

  137. Wang, H. X.; Yang, X. Z.; Sun, C. Y.; Mao, C. Q. Matrix metalloproteinase 2-responsive micelle for sirna delivery. Biomaterials 2014, 35(26), 7622–7634

    Article  CAS  PubMed  Google Scholar 

  138. Sun, C. Y.; Shen, S.; Xu, C. F.; Li, H. J. Tumor acidity-sensitive polymeric vector for active targeted sirna delivery. J. Am. Chem. Soc. 2015, 137(48), 15217–15224

    Article  CAS  PubMed  Google Scholar 

  139. Guan, X.; Guo, Z.; Lin, L.; Chen, J. Ultrasensitive pH triggered charge/size dual-rebound gene delivery system. Nano Lett. 2016, 16(11), 6823–6831

    Article  CAS  PubMed  Google Scholar 

  140. Wakebayashi, D.; Nishiyama, N.; Yamasaki, Y.; Itaka, K. Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system: Their preparation and gene transfecting efficiency against cultured HEPG2 cells. J. Control. Release 2004, 95(3), 653–664

    Article  CAS  PubMed  Google Scholar 

  141. Harada, A.; Kataoka, K. Pronounced activity of enzymes through the incorporation into the core of polyion complex micelles made from charged block copolymers. J. Control. Release 2001, 72(1-3), 85–91

    Article  CAS  PubMed  Google Scholar 

  142. Dufresne, M. H.; Leroux, J. C. Study of the micellization behavior of different order amino block copolymers with heparin. Pharm. Res. 2004, 21(1), 160–169

    Article  CAS  PubMed  Google Scholar 

  143. Biswas, A.; Joo, K. I.; Liu, J.; Zhao, M. X. Endoprotease-mediated intracellular protein delivery using nanocapsules. ACS Nano 2011, 5(2), 1385–1394

    Article  CAS  PubMed  Google Scholar 

  144. Liu, Y.; Wang, H.; Kamei, K.; Yan, M. Delivery of intact transcription factor by using self-assembled supramolecular nanoparticles. Angew. Chem. Int. Ed. 2011, 50(13), 3058–3062

    Article  CAS  Google Scholar 

  145. Govender, T.; Stolnik, S.; Xiong, C.; Zhang, S. Drug-polyionic block copolymer interactions for micelle formation: Physicochemical characterisation. J. Control. Release. 2001, 75(3), 249–258

    Article  CAS  PubMed  Google Scholar 

  146. Safra, T.; Muggia, F.; Jeffers, S.; Tsao-Wei, D. D. Pegylated liposomal doxorubicin (doxil): Reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m(2). Ann Oncol. 2000, 11(8), 1029–1033

    Article  CAS  PubMed  Google Scholar 

  147. Cho, K. J.; Wang, X.; Nie, S. M.; Chen, Z. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008, 14(5), 1310–1316

    Article  CAS  PubMed  Google Scholar 

  148. Koudelka, S.; Turanek, J. Liposomal paclitaxel formulations. J. Control. Release 2012, 163(3), 322–334

    Article  CAS  PubMed  Google Scholar 

  149. Lim, W. T.; Leong, S. S.; Toh, C. K.; Ang, C. S. A phase i pharmacokinetic study of a liposomal formulation of paclitaxel administered weekly to Asian patients with solid malignancies. J. Clin. Oncol. 2009, 27(15), 2581.

    Google Scholar 

  150. Markman, M. Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert Opin. Pharmaco. 2006, 7(11), 1469–1474

    Article  CAS  Google Scholar 

  151. Gaspar, M. M.; Perez-Soler, R.; Cruz, M. E. Biological characterization of l-asparaginase liposomal formulations. Cancer Chemother. Pharmacol. 1996, 38(4), 373–377

    Article  CAS  PubMed  Google Scholar 

  152. Felgner, P. L.; Holm, M.; Chan, H. Cationic liposome mediated transfection. Proc. West Pharmacol. Soc. 1989, 32, 115–121

    CAS  PubMed  Google Scholar 

  153. Felgner, P. L.; Ringold, G. M. Cationic liposome-mediated transfection. Nature 1989, 337(6205), 387–388

    Article  CAS  PubMed  Google Scholar 

  154. Murray, K. D.; McQuillin, A.; Stewart, L.; Etheridge, C. J. Cationic liposome-mediated DNA transfection in organotypic explant cultures of the ventral mesencephalon. Gene Ther. 1999, 6(2), 190–197

    Article  CAS  PubMed  Google Scholar 

  155. Kim, J. K.; Choi, S. H.; Kim, C. O.; Park, J. S. Enhancement of polyethylene glycol (PEG)-modified cationic liposomemediated gene deliveries: effects on serum stability and transfection efficiency. J. Pharm. Pharmacol. 2003, 55(4), 453–460

    Article  CAS  PubMed  Google Scholar 

  156. Zhu, L.; Kate, P.; Torchilin, V. P. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 2012, 6(4), 3491–3498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Anonymous. Classification and diagnosis of diabetes. Diabetes Care 2015, 38(Suppl. 1), S8–S16

    Google Scholar 

  158. Craft, S. The role of metabolic disorders in alzheimer disease and vascular dementia: Two roads converged. Arch. Neurol. 2009, 66(3), 300–305

    Article  PubMed Central  PubMed  Google Scholar 

  159. Canivell, S.; Gomis, R. Diagnosis and classification of autoimmune diabetes mellitus. Autoimmun. Rev. 2014, 13(4-5), 403–407

    Article  CAS  PubMed  Google Scholar 

  160. Abdi, H.; Hosseinpanah, F.; Azizi, F.; Hadaegh, F. Screening for dysglycemia: a comment on classification and diagnosis of diabetes in american diabetes association standards of medical care in diabetes-2016. Arch. Iran. Med. 2017, 20(6), 389–389

    PubMed  Google Scholar 

  161. Yang, H.; Zhang, C.; Li, C.; Liu, Y. Glucose-responsive polymer vesicles templated by alpha-CD/PEG inclusion complex. Biomacromolecules 2015, 16(4), 1372–1381

    Article  CAS  PubMed  Google Scholar 

  162. Yang, H.; Ma, R.; Yue, J.; Li, C. A facile strategy to fabricate glucose-responsive vesicles via a template of thermo-sensitive micelles. Polym. Chem. 2015, 6(20), 3837–3846

    Article  CAS  Google Scholar 

  163. Zhao, L.; Xiao, C. S.; Wang, L. Y.; Gai, G. Q. Glucose-sensitive polymer nanoparticles for self-regulated drug delivery. Chem. Commun. 2016, 52(49), 7633–7652

    Article  CAS  Google Scholar 

  164. Wang, B. L.; Ma, R. J.; Liu, G.; Li, Y. Glucose-responsive micelles from self-assembly of poly(ethylene glycol)-b-poly(acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir 2009, 25(21), 12522–12528

    Article  CAS  PubMed  Google Scholar 

  165. Cambre, J. N.; Sumerlin, B. S. Biomedical applications of boronic acid polymers. Polymer 2011, 52(21), 4631–4643

    Article  CAS  Google Scholar 

  166. Liu, G.; Ma, R. J.; Ren, J.; Li, Z. A glucose-responsive complex polymeric micelle enabling repeated on-off release and insulin protection. Soft Matter 2013, 9(5), 1636–1644

    Article  CAS  Google Scholar 

  167. Selkoe, D. J.; Schenk, D. Alzheimer’s disease: Molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol 2003, 43, 545–84

    Article  CAS  PubMed  Google Scholar 

  168. Small, D. H.; Losic, D.; Martin, L. L.; Turner, B. J. Alzheimer’s disease therapeutics: new approaches to an ageing problem. IUBMB Life. 2004, 56(4), 203–208

    Article  CAS  PubMed  Google Scholar 

  169. Anand, R.; Gill, K. D.; Mahdi, A. A. Therapeutics of alzheimer’s disease: Past, present and future. Neuropharmacology 2014, 76, 27–50

    Article  CAS  PubMed  Google Scholar 

  170. Rafii, M. S. Preclinical alzheimer’s disease therapeutics. J. Alzheimers Dis. 2014, 42(Suppl. 4), S545–S549

    Article  PubMed  Google Scholar 

  171. Kelleher-Andersson, J. Discovery of neurogenic, alzheimer’s disease therapeutics. Curr. Alzheimer Res. 2006, 3(1), 55–62

    Article  CAS  PubMed  Google Scholar 

  172. Boada, M.; Ortiz, P.; Anaya, F.; Hernandez, I. Amyloid-targeted therapeutics in alzheimer’s disease: Use of human albumin in plasma exchange as a novel approach for a beta mobilization. Drug News Perspect. 2009, 22(6), 325–339

    Article  CAS  PubMed  Google Scholar 

  173. Shvaloff, A.; Neuman, E.; Guez, D. Lines of therapeutics research in alzheimer’s disease. Psychopharmacol. Bull. 1996, 32(3), 343–352

    CAS  PubMed  Google Scholar 

  174. Hardy, J.; Selkoe, D. J. Medicine—he amyloid hypothesis of alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002, 297(5580), 353–356

    Article  CAS  PubMed  Google Scholar 

  175. Dennis, J.; Selkoe, M. D. The therapeutics of Alzheimer’s disease: Where we stand and where we are heading. Ann. Neurol. 2013, 74(3), 328–336

    Article  CAS  Google Scholar 

  176. Horwich, A. L. Molecular chaperones in cellular protein folding: The birth of a field. Cell 2014, 157(2), 285–288

    Article  CAS  PubMed  Google Scholar 

  177. Baneyx, F.; Thomas, J. G. Collaboration of major and minor molecular chaperones in cellular protein folding. Abstracts of Papers of the American Chemical Society. 2000, 219, U179–U180

    Google Scholar 

  178. Huang, F.; Wang, J. Z.; Qu, A. T.; Shen, L. L. Maintenance of amyloid beta peptide homeostasis by artificial chaperones based on mixed-shell polymeric micelles. Angew. Chem. Int. Ed. 2014, 53(34), 8985–8990

    Article  CAS  Google Scholar 

  179. Wang, J.; Song, Y.; Sun, P.; An, Y. Reversible interactions of proteins with mixed shell polymeric micelles: Tuning the surface hydrophobic/hydrophilic balance toward efficient artificial chaperones. Langmuir 2016, 32(11), 2737–2749

    Article  CAS  PubMed  Google Scholar 

  180. Huang, F.; Shen, L.; Wang, J.; Qu, A. Effect of the surface charge of artificial chaperones on the refolding of thermally denatured lysozymes. ACS Appl. Mater. Interfaces 2016, 8(6), 3669–3678

    Article  CAS  PubMed  Google Scholar 

  181. Wang, J.; Yin, T.; Huang, F.; Song, Y. Artificial chaperones based on mixed shell polymeric micelles: Insight into the mechanism of the interaction of the chaperone with substrate proteins using forster resonance energy transfer. ACS Appl. Mater. Interfaces 2015, 7(19), 10238–10249

    Article  CAS  PubMed  Google Scholar 

  182. Watanabe, K.; Nakamura, K.; Akikusa, S.; Okada, T. Inhibitors of fibril formation and cytotoxicity of beta-amyloid peptide composed of KLVFF recognition element and flexible hydrophilic disrupting element. Biochem. Biophys. Res. Commun. 2002, 290(1), 121–124

    Article  CAS  PubMed  Google Scholar 

  183. Tjernberg, L. O.; Naslund, J.; Lindqvist, F.; Johansson, J. Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 1996, 271(15), 8545–8

    Article  CAS  PubMed  Google Scholar 

  184. Liu, F. F.; Du, W. J.; Sun, Y.; Zheng, J. Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-beta protein. Front. Chem. Sci. Eng. 2014, 8(4), 433–444

    Article  CAS  Google Scholar 

  185. Qu, A. T.; Huang, F.; Li, A.; Yang, H. R. The synergistic effect between KLVFF and self-assembly chaperones on both disaggregation of beta-amyloid fibrils and reducing consequent toxicity. Chem. Commun. 2017, 53(7), 1289–1292

    Article  CAS  Google Scholar 

  186. Vonghia, L.; Leggio, L.; Ferrulli, A.; Bertini, M. Acute alcohol intoxication. Eur. J. Intern. Med. 2008, 19(8), 561–567

    Article  CAS  PubMed  Google Scholar 

  187. Kantrow, S. P.; Shen, Z.; Zhang, P.; Ramsey, J. Acute alcohol intoxication, lung permeability and host defense. Alcohol. Clin. Exp. Res. 2008, 32(6), 172a–172a.

    Google Scholar 

  188. Gerstman, M. D.; Merry, A. F.; McIlroy, D. R.; Hannam, J. A. Acute alcohol intoxication and bispectral index monitoring. Acta Anaesth. Scand. 2015, 59(8), 1015–1021

    Article  CAS  PubMed  Google Scholar 

  189. Sellers, E. M.; Kalant, H. Drug-therapy-alcohol intoxication and withdrawal. New Eng. J. of Med. 1976, 294(14), 757–762

    Article  Google Scholar 

  190. Robertson, C. C.; Sellers, E. M. Alcohol intoxication and alcohol withdrawal syndrome. Postgrad. Med. 1978, 64(6), 133–138

    Article  CAS  PubMed  Google Scholar 

  191. Sellers, E. M.; Kalant, H. Alcohol intoxication and withdrawal. New. Engl. J. Med. 1976, 294(14), 757–762

    Article  PubMed  Google Scholar 

  192. Shpilenya, L. S.; Muzychenko, A. P.; Gasbarrini, G.; Addolorato, G. Metadoxine in acute alcohol intoxication: A double-blind, randomized, placebo-controlled study. Alcohol. Clin. Exp. Res. 2002, 26(3), 340–346

    Article  CAS  PubMed  Google Scholar 

  193. Liu, Y.; Du, J. J.; Yan, M.; Lau, M. Y. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat. Nanotechnol. 2013, 8(3), 187–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  194. Munoz-Bonilla, A.; Fernandez-Garcia, M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012, 37(2), 281–339

    Article  CAS  Google Scholar 

  195. Pelgrift, R. Y.; Friedman, A. J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliver. Rev. 2013, 65(13-14), 1803–1815

    Article  CAS  Google Scholar 

  196. Zhang, L.; Pornpattananangkul, D.; Hu, C. M. J.; Huang, C. M. Development of nanoparticles for antimicrobial drug delivery. Currt. Med. Chem. 2010, 17(6), 585–594

    Article  CAS  Google Scholar 

  197. Zhang, Y.; Chan, H. F.; Leong, K. W. Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliver. Rev. 2013, 65(1), 104–120

    Article  CAS  Google Scholar 

  198. Peltonen, L. I.; Kinnari, T. J.; Aarnisalo, A. A.; Kuusela, P. Comparison of bacterial adherence to polylactides, silicone, and titanium. Acta Oto-Laryngologica 2007, 127(6), 587–593

    Article  CAS  PubMed  Google Scholar 

  199. Kornman, K. S. Controlled-release local delivery antimicrobials in periodontics: prospects for the future. J Periodontol. 1993, 64(8 Suppl), 782–791

    Article  CAS  PubMed  Google Scholar 

  200. Smith, A. W. Biofilms and antibiotic therapy: Is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv. Drug Deliver. Rev. 2005, 57(10), 1539–1550

    Article  CAS  Google Scholar 

  201. Hittinger, M.; Juntke, J.; Kletting, S.; Schneider-Daum, N. Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models. Adv. Drug Deliver. Rev. 2015, 85, 44–56

    Article  CAS  Google Scholar 

  202. Arthur, T. D.; Cavera, V. L.; Chikindas, M. L. On bacteriocin delivery systems and potential applications. Future Microbiol. 2014, 9(2), 235–248

    Article  CAS  PubMed  Google Scholar 

  203. Herbrecht, R.; Denning, D. W.; Patterson, T. F.; Bennett, J. E. Voriconazole versus amphotericin b for primary therapy of invasive aspergillosis. New Engl. J. Med. 2002, 347(6), 408–415

    Article  CAS  PubMed  Google Scholar 

  204. Walsh, T. J.; Teppler, H.; Donowitz, G. R.; Maertens, J. A. Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia. New Engl. J. Med. 2004, 351(14), 1391–1402

    Article  CAS  PubMed  Google Scholar 

  205. Kim, H. J.; Jones, M. N. The delivery of benzyl penicillin to staphylococcus aureus biofilms by use of liposomes. J. Liposome Res. 2004, 14(3-4), 123–139

    Article  CAS  PubMed  Google Scholar 

  206. Pinto-Alphandary, H.; Andremont, A.; Couvreur, P. Targeted delivery of antibiotics using liposomes and nanoparticles: Research and applications. Int. J. Antimicrob. Agents 2000, 13(3), 155–168

    Article  CAS  PubMed  Google Scholar 

  207. Onyeji, C. O.; Nightingale, C. H.; Marangos, M. N. Enhanced killing of methicillin-resistant staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin. Infection 1994, 22(5), 338–342

    Article  CAS  PubMed  Google Scholar 

  208. Schumacher, I.; Margalit, R. Liposome-encapsulated ampicillin: Physicochemical and antibacterial properties. J. Pharm. Sci. 1997, 86(5), 635–641

    Article  CAS  PubMed  Google Scholar 

  209. Huang, F.; Gao, Y.; Zhang, Y.; Cheng, T. Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity. ACS Appl Mater Interfaces 2017, 9(20), 16881–16890

    Article  CAS  Google Scholar 

  210. Chu, L.; Gao, H.; Cheng, T.; Zhang, Y. A charge-adaptive nanosystem for prolonged enhanced in vivo antibiotic delivery. Chem. Commun. 2016, 52(37), 6265–6268

    Article  CAS  Google Scholar 

  211. Shah, L. K.; Amiji, M. M. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm. Res. 2006, 23(11), 2638–2645

    Article  CAS  PubMed  Google Scholar 

  212. Mosqueira, V. C. F.; Loiseau, P. M.; Bories, C.; Legrand, P. Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in plasmodium berghei-infected mice. Antimicrob. Agents Ch. 2004, 48(4), 1222–1228

    Article  CAS  Google Scholar 

  213. Liu, Y.; Busscher, H. J.; Zhao, B. R.; Li, Y. F. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms. ACS Nano 2016, 10(4), 4779–4789

    Article  CAS  PubMed  Google Scholar 

  214. Li, Y. M.; Liu, G. H.; Wang, X. R.; Hu, J. M. Enzyme-responsive polymeric vesicles for bacterial-strainselective delivery of antimicrobial agents. Angew. Chem. Int. Ed. 2016, 55(5), 1760–1764

    Article  CAS  Google Scholar 

  215. Hasan, J.; Crawford, R. J.; Lvanova, E. P. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends in Biotechnol. 2013, 31(5), 31–40

    Article  CAS  Google Scholar 

  216. Insua, I.; Liamas, E.; Zhang, Z. Y.; Peacock, A. F. A. Enzyme-responsive polyion complex (PIC) nanoparticles for the targeted delivery of antimicrobial polymers. Polym. Chem. 2016, 7(15), 2684–2690.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Thousand Talents Program for Young Professionals, the National Natural Science Foundation of China (No. 51673100), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Additional information

Invited review for special issue of “Supramolecular Self-Assembly”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, CX., Zhao, Y. & Liu, Y. Recent Advances in Self-assembled Nano-therapeutics. Chin J Polym Sci 36, 322–346 (2018). https://doi.org/10.1007/s10118-018-2078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2078-y

Keywords

Navigation