Skip to main content

Benefits of Molecular Medicine from Self-Assembled Nanostructured Materials

  • Chapter
  • First Online:
Nanovaccinology

Abstract

Self-assembled nanostructured materials are gaining popularity due to their extensive applications in the fields of nanotechnology, biosensing, biomedical sciences, imaging techniques, etc. This is mainly attributed to its simplicity, low cost, spontaneity, scalability, versatility, and yield technique with a wide range of scientific and technological applications. This chapter presents different means of characterizing self-organizing structures using several techniques to investigate their properties. Molecular self-assembly depends on chemical complementarity and structural compatibility. In this chapter, the mechanisms of molecular self-assembly will be discussed. The weak non-covalent bonds like electrostatic interactions, hydrogen bonds, hydrophobic and hydrophilic interactions, water-mediated hydrogen bonds, and van der Waals interactions will be explained. The benefits of using self-assembled nanostructured materials in molecular medicine will be addressed. The focus here is mainly on the applications related to molecular medicine leading to targeted drug delivery. The chapter also discusses the challenges encountered and suitable solutions that need to be approached extensively. These will be addressed specifically in relation to molecular medicine applications and drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105–121.

    Article  CAS  Google Scholar 

  • Ariga, K., Nishikawa, M., Mori, T., Takeya, J., Shrestha, L. K., & Hill, J. P. (2019 Jan 31). Self-assembly as a key player for materials nanoarchitectonics. Science and Technology of Advanced Materials, 20(1), 51–95.

    Article  CAS  Google Scholar 

  • Castillo-León, J., Andersen, K. B., & Svendsen, W. E. (2011). Self–assembled peptide nanostructures for biomedical applications: Advantages and challenges. Biomaterials Science and Engineering, 10, 23322.

    Google Scholar 

  • Chen, J., Guo, L., Qiu, B., Lin, Z., & Wang, T. (2018). Application of ordered nanoparticle self-assemblies in surface-enhanced spectroscopy. Materials Chemistry Frontiers, 2(5), 835–860.

    Article  CAS  Google Scholar 

  • Delfi, M., Sartorius, R., Ashrafizadeh, M., Sharifi, E., Zhang, Y., De Berardinis, P., Zarrabi, A., Varma, R. S., Tay, F. R., Smith, B. R., & Makvandi, P. (2021). Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today, 38, 101119.

    Article  CAS  Google Scholar 

  • Gao, X., & Matsui, H. (2005). Peptide-based nanotubes and their applications in bionanotechnology. Advanced Materials, 17(17), 2037–2050. https://doi.org/10.1002/adma.200401849

    Article  CAS  Google Scholar 

  • Habibi, N., Kamaly, N., Memic, A., & Shafiee, H. (2016). Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today, 11(1), 41–60.

    Article  CAS  Google Scholar 

  • Huynh, N. T., Passirani, C., Saulnier, P., & Benoit, J. P. (2009). Lipid nanocapsules: a new platform for nanomedicine. International Journal of Pharmaceutics, 379(2), 201–209.

    Article  CAS  Google Scholar 

  • Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050–1074.

    Article  CAS  Google Scholar 

  • Kasotakis, E., Mossou, E., Adler-Abramovich, L., Mitchell, E. P., Forsyth, V. T., Gazit, E., & Mitraki, A. (2009). Design of metal-binding sites onto self-assembled peptide fibrils. Peptide Science: Original Research on Biomolecules, 92(3), 164–172.

    Article  CAS  Google Scholar 

  • Kochovski, Z., Chen, G., Yuan, J., & Lu, Y. (2020). Cryo-Electron microscopy for the study of self-assembled poly(ionic liquid) nanoparticles and protein supramolecularstructures. Colloid & Polymer Science, 298, 707–717.

    Article  CAS  Google Scholar 

  • Koshy, O. (2017). Differential scanning calorimetry in nanoscience and nanotechnology. In Thermal and rheological measurement techniques for nanomaterials characterization (pp. 109–122). Elsevier.

    Chapter  Google Scholar 

  • Lee, S., Trinh, T. H. T., Yoo, M., Shin, J., Lee, H., Kim, J., Hwang, E., Lim, Y. B., & Ryou, C. (2019). Self-assembling peptides and their application in the treatment of diseases. International Journal of Molecular Sciences, 20(23), 5850.

    Article  CAS  Google Scholar 

  • Li, J. (2017). Supramolecular chemistry of biomimetic systems. Advantages of self-assembled supramolecular polymers toward biological applications (pp. 9–35). Springer. https://doi.org/10.1007/978-981-10-6059-5

    Book  Google Scholar 

  • Lu, W. (2012). Self-assembly of nanostructures. In B. Bhushan (Ed.), Encyclopedia of nanotechnology. Springer.

    Google Scholar 

  • Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. K. (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10, 12871–12934.

    Article  CAS  Google Scholar 

  • Nie, Z., Petukhova, A., & Kumacheva, E. (2010). Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotechnology, 5(1), 15–25.

    Article  CAS  Google Scholar 

  • Pignatello, R. (2011). Self-assembled peptide nanostructures for biomedical applications: Advantages and challenges. Biomaterials Science and Engineering. https://doi.org/10.5772/1956

  • Puri, A., Loomis, K., Smith, B., Lee, J. H., Yavlovich, A., Heldman, E., & Blumenthal, R. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Critical Reviews in Therapeutic Drug Carrier Systems, 26(6), 523–580.

    Article  CAS  Google Scholar 

  • Scioli Montoto, S., Muraca, G., & Ruiz, M. E. (2020). Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Frontiers in Molecular Biosciences, 7, 587997.

    Article  Google Scholar 

  • Stephen, V. J., Andrew, M. R., Nigel, R. H., Hodson, W., Saiani, A., Gough, J. E., & Ulijin, V. (2009). Introducing chemical functionality in Fmoc-peptide gels for cell culture. Acta Biomaterialia, 5(3), 934–943.

    Article  Google Scholar 

  • Subramani, K., & Ahmed, W. (2018). Self-assembly of proteins and peptides and their applications in bionanotechnology and dentistry. In Emerging nanotechnologies in dentistry (pp. 231–249). William Andrew Publishing.

    Chapter  Google Scholar 

  • Suhail, N., Alzahrani, A. K., Basha, W. J., Kizilbash, N., Zaidi, A., Ambreen, J., & Khachfe, H. M. (2021). Microemulsions: Unique properties, pharmacological applications, and targeted drug delivery. Frontiers in Nanotechnology, 69.

    Google Scholar 

  • Tan, A., Hong, L., Du, J. D., & Boyd, B. J. (2019). Self-assembled nanostructured lipid systems: is there a link between structure and cytotoxicity? Advanced Science, 6(3), 1801223.

    Article  Google Scholar 

  • Wang, L., Gong, C., Yuan, X., & Wei, G. (2019). Controlling the self-assembly of biomolecules into functional nanomaterials through internal interactions and external stimulations: A review. Nanomaterials (Basel), 9(2), 285.

    Article  CAS  Google Scholar 

  • Zhang, S. (2002). Emerging biological materials through molecular self-assembly. Biotechnology Advances, 20(5–6), 321–339.

    Article  CAS  Google Scholar 

  • Zuccheri, G., & Samorì, B. (2011). Methods in molecular biology; DNA nanotechnology. In Synthesis and characterization of self-assembled DNA nanostructures (Chapter 1) (Vol. 749, pp. 1–11). https://doi.org/10.1007/978-1-61779-142-0

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sowmya, S.V., Pushpalatha, C., Augustine, D., Singh, I., Shakir, A., Dhodwad, R. (2023). Benefits of Molecular Medicine from Self-Assembled Nanostructured Materials. In: Pal, K. (eds) Nanovaccinology. Springer, Cham. https://doi.org/10.1007/978-3-031-35395-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35395-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35394-9

  • Online ISBN: 978-3-031-35395-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics