Skip to main content
Log in

Effect of vermiculite dispersion in poly(lactic acid) preparation and its biodegradability

  • Natural Polymers
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

In the present work, the research on the preparation, crystallization behavior and biodegradability of poly(lactic acid)-vermiculite nano-composites was carried out. Surfactant modified vermiculite was used accompanied with the poly(lactic acid) to prepare the nano-composites via in situ intercalative polymerization. The purpose was to evaluate the impact of the vermiculite and its different content on the morphology and properties of nano-composites. The crystal structure and morphology of poly(lactic acid) before and after nano-composites preparation were examined by wide-angle X-ray diffraction, polar optical microscopy and differential scanning calorimetry. The as-prepared nano-composites exhibited remarkable improvement of multiple materials properties due to the decrease in crystallinity. The enhanced biodegradability of nanocomposites was also presented along with the increase of vermiculite content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Samberg, P. Mente, T. He, M. W. King, and N. A. Monteiro-Riviere, Ann. Biomed. Eng. 42, 1482 (2014).

    Article  Google Scholar 

  2. X. Mao, Z. Chen, J. Ling, J. Quan, H. Peng, and Y. Xiao, BioMed. Res. Int. 2014, 738239 (2014).

    Article  Google Scholar 

  3. V. Taubner and R. Shishoo, J. Appl. Polym. Sci. 79, 2128 (2001).

    Article  CAS  Google Scholar 

  4. R. Rizvi, O. Khan, and H. E. Naguib, CAN Patent No. 246836081 (2011).

    Google Scholar 

  5. R. Jantas, S. Polowinski, D. Stawski, and J. Szumilewicz, Fibres Text. East Eur. 18, 87 (2010).

    CAS  Google Scholar 

  6. T. Maharana, S. Pattanaik, A. Routaray, N. Nath, and A. K. Sutar, Reac. Funct. Ploym. 93, 47 (2015).

    Article  CAS  Google Scholar 

  7. N. K. Madhavan, R. N. R. Nai, and R. P. John, Bioresour. Technol. 101, 8493 (2010).

    Article  Google Scholar 

  8. R. Auras, B. Harte, and S. Selke, Macromol. Biosci. 4, 835 (2004).

    Article  CAS  Google Scholar 

  9. C. Kaynak and Y. Meyva, Polym. Adv. Technol. 25, 1622 (2014).

    Article  CAS  Google Scholar 

  10. X. Dai, Z. Xiong, H. Na, and J. Zhu, Compos. Sci. Technol. 90, 9 (2014).

    Article  CAS  Google Scholar 

  11. M. Kowalczyk, E. Piorkowska, S. Dutkiewicz, and P. Sowinski, Eur. Polym. J. 59, 59 (2014).

    Article  CAS  Google Scholar 

  12. A. R. Esposito, C. M. Kamikawaa, C. Lucchesia, B.M. P. Ferreira, and E. A. D. R. Duek, Mater. Res. 16, 695 (2013).

    Article  CAS  Google Scholar 

  13. I. Q. Ca, Y. Wan, I. J. Be, and S. Wang, Biomaterials 24, 3555 (2003).

    Article  Google Scholar 

  14. M. Huttunen and M. Kellomäki, Biomatter 3, e26395 (2013).

    Article  Google Scholar 

  15. Y. Tokiwa and B. P. Calabia, Appl. Microbiol. Biotechnol. 72, 244 (2006).

    Article  CAS  Google Scholar 

  16. A. V. Janorkar, A. T. Metters, and D. E. Hirt, Macromolecules 37, 9151 (2004).

    Article  CAS  Google Scholar 

  17. N. Greesh, P. C. Hartmann, V. Cloete, and R. D. Sanderson, J. Polym. Sci., Part A: Polym. Chem. 46, 3619 (2008).

    Article  CAS  Google Scholar 

  18. M. Liu, M. Pu, and H. Ma, Compos. Sci. Technol. 72, 1508 (2012).

    Article  CAS  Google Scholar 

  19. A. Fujimori, N. Ninomiya, and T. Masuko, Polym. Eng. Sci. 48, 1103 (2008).

    Article  CAS  Google Scholar 

  20. S. Butun and N. Sahiner, Polymer 52, 4834 (2011).

    Article  CAS  Google Scholar 

  21. S. S. Ray and M. Okamoto, Prog. Polym. Sci. 28, 1539 (2003).

    Article  CAS  Google Scholar 

  22. E. Narimissa, R. K. Gupta, N. Kao, H. J. Choi, and S. Bhattacharya, Polym. Eng. Sci. 55, 1560 (2014).

    Article  Google Scholar 

  23. O. Yoshida and M. Okamoto, Macromol. Rapid Commun. 27, 751 (2006).

    Article  CAS  Google Scholar 

  24. K. Yao, X. Wen, H. Tan, J. Gong, J. Zheng, W. Zhao, Y. Wang, D. Cui, H. Na, and T. Tang, Soft Matter 9, 10891 (2013).

    Article  CAS  Google Scholar 

  25. S. Khvan, J. Kim, and S.-S. Lee, Macromol. Res. 15, 51 (2015).

    Article  Google Scholar 

  26. P. Singla, R. Mehta, and S. N. Upadhyay, Appl. Clay Sci. 95, 67 (2014).

    Article  CAS  Google Scholar 

  27. Y. Qian, W. Liu, Y. T. Park, C. I. Lindsay, R. Camargo, C. W. Macosko, and A. Stein, Polymer 53, 5060 (2012).

    Article  CAS  Google Scholar 

  28. G. L. Re, S. Benali, Y. Habibi, J.-M. Raquez, and P. Dubois, Eur. Polym. J. 54, 138 (2014).

    Article  Google Scholar 

  29. J. H. Zhang, W. Zhuang, Q. Zhang, B. Liu, W. Wang, B. X. Hu, and J. Shen, Polym. Compos. 28, 545 (2007).

    Article  CAS  Google Scholar 

  30. I. Zembouai, S. Bruzaud, M. Kaci, A. Benhamida, Y.-M. Corre, Y. Grohens, A. Taguet, and J.-M. Lopez-Cuesta, J. Polym. Environ. 22, 131 (2014).

    Article  CAS  Google Scholar 

  31. K. Prakalathan, S. Mohanty, and S. K. Nayak, Polym. Compos. 33, 1848 (2012).

    Article  CAS  Google Scholar 

  32. I.-H. Kim and Y. G. Jeong, J. Polym. Sci., Part B: Polym. Phys. 48, 850 (2010).

    Article  CAS  Google Scholar 

  33. N. A. Isitman, M. Dogan, E. Bayramli, and C. Kaynak, Polym. Degrad. Stab. 97, 1285 (2012).

    Article  CAS  Google Scholar 

  34. M. Zenkiewicz, J. Richert, and A. Rózanski, Polym. Test. 29, 251 (2010).

    Article  CAS  Google Scholar 

  35. R. Norouzian and N. T. Qazvini, J. Polym. Eng. 30, 461 (2010).

    Google Scholar 

  36. A. Martínez-Gómez and C. Á. E. Pérezb, Polymer 50, 1447 (2009).

    Article  Google Scholar 

  37. W. Hoogsteen, A. R. Postema, A. J. Pennings, G. T. Brinke, and P. Zugenmaier, Marcomolecules 23, 634 (1990).

    Article  CAS  Google Scholar 

  38. D. Brizzolara, H.-J. Cantow, K. Diederichs, E. Keller, and A. J. Domb, Macromolecules 29, 191 (1996).

    Article  CAS  Google Scholar 

  39. Y. Zhang and J. R. G. Evans, Colloids Surf. A: Physicochem. Eng. Asp. 408, 71 (2012).

    Article  CAS  Google Scholar 

  40. S. J. Ahmadi, H. Yudong, and W. Li, Iran. Polym. J. 13, 415 (2004).

    CAS  Google Scholar 

  41. X. Liu, T. Wang, L. C. Chow, M. Yang, and J. W. Mitchell, Int. J. Polym. Sci. 2014, 827028 (2014).

    Google Scholar 

  42. M. I. Damia, M. A. Amalina, and Y. Mahshuri, Mater. Res. Innovat. 18, 95 (2011).

    Google Scholar 

  43. S. S. Ray and M. Okamoto, Prog. Polym. Sci. 28, 1539 (2003).

    Article  CAS  Google Scholar 

  44. J.-M. Yeh, S.-J. Liou, C.-Y. Lin, C.-Y. Cheng, and Y.-W. Chang, Chem. Mater. 14, 154 (2002).

    Article  CAS  Google Scholar 

  45. H. Lu and S. Nutt, Marcomolecules 36, 4010 (2003).

    Article  CAS  Google Scholar 

  46. B. L. Dargaville, C. Vaquette, H. Peng, F. Rasoul, Y. Q. Chau, J. J. Cooper-White, J. H. Campbell, and A. K. Whittaker, Biomacromolecules 12, 3856 (2011).

    Article  CAS  Google Scholar 

  47. L. Wu, S. Chen, Z. Li, K. Xu, G.-Q. Chen, Polym. J. 57, 939 (2008).

    CAS  Google Scholar 

  48. J. Ren and K. Adachi, Macromolecules 36, 5180 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Guo.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Chen, M., Li, J. et al. Effect of vermiculite dispersion in poly(lactic acid) preparation and its biodegradability. Polym. Sci. Ser. B 58, 47–53 (2016). https://doi.org/10.1134/S1560090416010024

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090416010024

Keywords

Navigation