Skip to main content
Log in

Quantitative grafting of peptide onto the nontoxic biodegradable waterborne polyurethanes to fabricate peptide modified scaffold for soft tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) peptide has frequently been used in the biomedical materials to enhance adhesion and proliferation of cells. In this work, we modified the nontoxic biodegradable waterborne polyurethanes (WBPU) with GRGDSP peptide and fabricated 3-D porous scaffold with the modified WBPU to investigate the effect of the immobilized GRGDSP peptide on human umbilical vein endothelial cells (HUVECs) adhesion and proliferation. A facile and reliable approach was first developed to quantitative grafting of GRGDSP onto the WBPU molecular backbone using ethylene glycol diglycidyl ether (EX810) as a connector. Then 3-D porous WBPU scaffolds with various GRGDSP content were fabricated by freeze-drying the emulsion. In both of the HUVECs adhesion and proliferation tests, enhanced cell performance was observed on the GRGDSP grafted scaffolds compared with the unmodified scaffolds and the tissue culture plate (TCP). The adhesion rate and proliferation rate increased with the increase of GRGDSP content in the scaffold and reached a maximum with peptide concentration of 0.85 μmol/g based on the weight of the polyurethanes. These results illustrate the necessity of the effective control of the GRGDSP content in the modified WBPU and support the potential utility of these 3-D porous modified WBPU scaffolds in the soft tissue engineering to guide cell adhesion, proliferation and tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. J Vasc Surg. 2003;37(2):472–80.

    Article  Google Scholar 

  2. Ratcliffe A. Tissue engineering of vascular grafts. Matrix Biol. 2000;19(4):353–7.

    Article  CAS  Google Scholar 

  3. Gumusderelioglu M, Turkoglu H. Biomodification of non-woven polyester fabrics by insulin and RGD for use in serum-free cultivation of tissue cells. Biomaterials. 2002;23(19):3927–35.

    Article  CAS  Google Scholar 

  4. Massia SP, Hubbell JA. Covalent surface immobilization of ARG-GLY-ASP-containing and TYR-ILE-GLY-SER-ARG-containing peptides to obtain well defined cell-adhesive substrates. Anal Biochem. 1990;187(2):292–301.

    Article  CAS  Google Scholar 

  5. Nakaoka R, Tsuchiya T, Nakamura A. Neural differentiation of midbrain cells on various protein-immobilized polyethylene films. J Biomed Mater Res A. 2003;64A(3):439–46.

    Article  CAS  Google Scholar 

  6. Olbrich KC, Andersen TT, Blumenstock FA, Bizios R. Surfaces modified with covalently-immobilized adhesive peptides affect fibroblast population motility. Biomaterials. 1996;17(8):759–64.

    Article  CAS  Google Scholar 

  7. Sharifpoor S, Labow RS, Santerre JP. Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications. Biomacromolecules. 2009;10(10):2729–39.

    Article  CAS  Google Scholar 

  8. Conconi MT, Ghezzo F, Dettin M, Urbani L, Grandi C, Guidolin D, et al. Effects on in vitro and in vivo angiogenesis induced by small peptides carrying adhesion sequences. J Pept Sci. 2010;16(7):349–57.

    CAS  Google Scholar 

  9. Sawyer AA, Hennessy KM, Bellis SL. Regulation of mesenchymal stem cell attachment and spreading on hydroxyapatite by RGD peptides and adsorbed serum proteins. Biomaterials. 2005;26(13):1467–75.

    Article  CAS  Google Scholar 

  10. Loschonsky S, Shroff K, Worz A, Prucker O, Ruhe J, Biesalski M. Surface-attached PDMAA-GRGDSP hybrid polymer monolayers that promote the adhesion of living cells. Biomacromolecules. 2008;9(2):543–52.

    Article  CAS  Google Scholar 

  11. Massia SP, Hubbell JA. Covalently attached Grgd on polymer surfaces promotes biospecific adhesion of mammalian-cells. Ann NY Acad Sci. 1990;589:261–70.

    Article  CAS  Google Scholar 

  12. Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984;309(5963):30–3.

    Article  CAS  Google Scholar 

  13. Staubli U, Chun D, Lynch G. Time-dependent reversal of long-term potentiation by an integrin antagonist. J Neurosci. 1998;18(9):3460–9.

    CAS  Google Scholar 

  14. Patel S, Tsang J, Harbers GM, Healy KE, Li S. Regulation of endothelial cell function by GRGDSP peptide grafted on interpenetrating polymers. J Biomed Mater Res A. 2007;83A(2):423–33.

    Article  CAS  Google Scholar 

  15. Lateef SS, Boateng S, Hartman TJ, Crot CA, Russell B, Hanley L. GRGDSP peptide-bound silicone membranes withstand mechanical flexing in vitro and display enhanced fibroblast adhesion. Biomaterials. 2002;23(15):3159–68.

    Article  CAS  Google Scholar 

  16. Li JH, Ding MM, Fu Q, Tan H, Xie XY, Zhong YP. A novel strategy to graft RGD peptide on biomaterials surfaces for endothelization of small-diameter vascular grafts and tissue engineering blood vessel. J Mater Sci Mater Med. 2008;19(7):2595–603.

    Article  CAS  Google Scholar 

  17. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  Google Scholar 

  18. Demir MM, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer. 2002;43(11):3303–9.

    Article  CAS  Google Scholar 

  19. Fujimoto K, Minato M, Miyamoto S, Kaneko T, Kikuchi H, Sakai K, et al. Porous polyurethane tubes as vascular graft. J Appl Biomater. 1993;4(4):347–54.

    Article  CAS  Google Scholar 

  20. Kowligi RR, Maltzahn WWV, Eberhart RC. Fabrication and characterization of small-diameter vascular prostheses. J Biomed Mater Res. 1988;22(S14):245–56.

    Article  CAS  Google Scholar 

  21. Saad B, Matter S, Ciardelli G, Uhlschmid GK, Welti M, Neuenschwander P, et al. Interactions of osteoblasts and macrophages with biodegradable and highly porous polyesterurethane foam and its degradation products. J Biomed Mater Res. 1996;32(3):355–66.

    Article  CAS  Google Scholar 

  22. Jiang X, Yu F, Wang Z, Li J, Tan H, Ding M, et al. Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimension porous scaffolds for vascular tissue engineering. J Biomater Sci Polym Ed. 2010;21:1637–52.

    Article  CAS  Google Scholar 

  23. Ito Y, Inoue M, Liu SQ, Imanishi Y. Cell-growth on immobilized cell-growth factor. 6. Enhancement of fibroblast cell-growth by immobilized insulin and or fibronectin. J Biomed Mater Res. 1993;27(7):901–7.

    Article  CAS  Google Scholar 

  24. Neff JA, Tresco PA, Caldwell KD. Surface modification for controlled studies of cell-ligand interactions. Biomaterials. 1999;20(23–24):2377–93.

    Article  CAS  Google Scholar 

  25. Jiang X, Li JH, Ding MM, Tan H, Ling QY, Zhong YP, et al. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(epsilon-caprolactone) and poly(ethylene glycol) as soft segment. Eur Polym J. 2007;43(5):1838–46.

    Article  CAS  Google Scholar 

  26. Dabrowska E, Pietka-Ottlik M, Palus J. Bis(2-aminophenyl) diselenide derivatives with amino acids moieties as potential antivirals and antimicrobials. Phosphorus Sulfur Silicon Relat Elem. 2008;183(4):1082–6.

    Article  CAS  Google Scholar 

  27. Williamson MR, Black R, Kielty C. PCL-PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials. 2006;27(19):3608–16.

    CAS  Google Scholar 

  28. She ZD, Jin CR, Huang Z, Zhang BF, Feng QL, Xu YX. Silk fibroin/chitosan scaffold: preparation, characterization, and culture with HepG2 cell. J Mater Sci Mater Med. 2008;19(12):3545–53.

    Article  CAS  Google Scholar 

  29. Zhu XH, Lee LY, Jackson JSH, Tong YW, Wang CH. Characterization of porous poly(d,l-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of hep3B cells. Biotechnol Bioeng. 2008;100(5):998–1009.

    Article  CAS  Google Scholar 

  30. Zhang S, Lv H, Zhang H, Wang B, Xu Y. Waterborne polyurethanes: spectroscopy and stability of emulsions. J Appl Polym Sci. 2006;101(1):597–602.

    Article  CAS  Google Scholar 

  31. Marcos-Fernandez A, Abraham GA, Valentin JL, San Roman J. Synthesis and characterization of biodegradable non-toxic poly(ester-urethane-urea)s based on poly(epsilon-caprolactone) and amino acid derivatives. Polymer. 2006;47(3):785–98.

    Article  CAS  Google Scholar 

  32. Srichatrapimuk VW, Cooper SL. Infrared thermal-analysis of polyurethane block polymers. J Macromol Sci Phys. 1978;B15(2):267–311.

    Google Scholar 

  33. Coleman MM, Skrovanek DJ, Hu JB, Painter PC. Hydrogen-bonding in polymer blends. 1. FTIR studies of urethane ether blends. Macromolecules. 1988;21(1):59–65.

    Article  CAS  Google Scholar 

  34. Tang YW, Labow RS, Santerre JP. Enzyme-induced biodegradation of polycarbonate polyurethanes: dependence on hard-segment concentration. J Biomed Mater Res. 2001;56(4):516–28.

    Article  CAS  Google Scholar 

  35. Tan H, Guo M, Du RN, Xie XY, Li JH, Zhong YP, et al. The effect of fluorinated side chain attached on hard segment on the phase separation and surface topography of polyurethanes. Polymer. 2004;45(5):1647–57.

    Article  CAS  Google Scholar 

  36. Tan H, Liu J, Li JH, Jiang X, Xie XY, Zhong YP, et al. Synthesis and hemocompatibility of biomembrane mimicing poly(carbonate urethane)s containing fluorinated alkyl phosphatidylcholine side groups. Biomacromolecules. 2006;7(9):2591–9.

    Article  CAS  Google Scholar 

  37. Diki T, Erich SJF, Ming W, Huinink HP, Thune PC, van Benthem RATM, et al. Fluorine depth profiling by high-resolution 1D magnetic resonance imaging. Polymer. 2007;48(14):4063–7.

    Article  Google Scholar 

  38. Hsu SH, Chen WC. Improved cell adhesion by plasma-induced grafting of l-lactide onto polyurethane surface. Biomaterials. 2000;21(4):359–67.

    Article  CAS  Google Scholar 

  39. Fussell GW, Cooper SL. Endothelial cell adhesion on RGD-containing methacrylate terpolymers. J Biomed Mater Res A. 2004;70A(2):265–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our great thanks to National 863 project (2008AA03Z304), program for the New-Century Excellent Talents of Ministry of Education of China (NCET-08-0381) and Sichuan Provincial Science Fund for Distinguished Young Scholars (09ZQ026-024) for Financial Support. We also appreciate Prof. Yong Wang at School of Materials Science and Engineering, Southwest JiaoTong University for his generous help in ESEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Tan or Qiang Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Wang, K., Ding, M. et al. Quantitative grafting of peptide onto the nontoxic biodegradable waterborne polyurethanes to fabricate peptide modified scaffold for soft tissue engineering. J Mater Sci: Mater Med 22, 819–827 (2011). https://doi.org/10.1007/s10856-011-4265-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4265-z

Keywords

Navigation