Skip to main content
Log in

The properties of a single polymer chain in solvent confined in a slit: A molecular dynamics simulation

  • Paper
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A single polymer chain in solvent confined in a slit formed by two parallel plates is studied by using molecular dynamics simulation method. The square radii of gyration and diffusion behaviors of polymers are greatly affected by the distance between the two plates, but they do not follow the same way. The chain size decays drastically with increasing h (h is the distance between two plates), until a basin occurs, and a universal h/〈R g0 dependence for polymer chains with different degrees of polymerization can be obtained. While, for the chain’s diffusion coefficient, it decays monotonously and there is no such basin-like behavior. Furthermore, we studied the radial distribution function of confined polymer chains to explain the reason why there is a difference for the decay behaviors between dynamic properties and static properties. Besides, we also give the degree of confinement dependence of the static scaling exponent for a single polymer chain. Our work provides an efficient way to estimate the dynamics and static properties of confined polymer chains, and also helps us to understand the behavior of polymer chains under confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y. and Teraoka, I., Macromolecules, 2000, 33: 3478.

    Article  CAS  Google Scholar 

  2. Cacciuto, A. and Luijten, E., Nano Lett., 2006, 6: 901.

    Article  CAS  Google Scholar 

  3. Chou, C.F., Austin, R.H., Bakajin, O., Tegenfeldt, J.O., Castelino, J.A., Chan, S.S., Cox, E.C., Craighead, H., Darnton, N., Duke, T., Han, J. and Turner, S., ElectroPhoresis, 2000, 21: 81.

    Article  CAS  Google Scholar 

  4. Pra, M.D., Kok, W.T. and Schoenmakers, P.J., J. Chromatogr. A, 2008, 1184: 560.

    Article  Google Scholar 

  5. Han, J., Fu, J. and Schoch, R.B., Lab on a Chip, 2007, 8: 23.

    Article  Google Scholar 

  6. Ma, W., Banavar, J.R. and Koplik, J., J. Chem. Phys., 1992, 97: 485.

    Article  CAS  Google Scholar 

  7. Zhu, W., Li, W. and Ma, H., Chinese J. Chem. Phys., 2002, 15: 295.

    CAS  Google Scholar 

  8. Wei, D., Yang, W., Jin, X. and Liao, Q., J. Chem. Phys., 2007, 126: 204901.

    Article  Google Scholar 

  9. Oleinikova, A. and Brovchenko, I., Phys. Rev. E, 2007, 76: 041603.

    Google Scholar 

  10. He, Y., Qian, H., Lu, Z. and Li, Z., Polymer, 2007, 48: 3601.

    Article  CAS  Google Scholar 

  11. Shaffer, J.S., Macromolecules, 1996, 29: 1010.

    Article  CAS  Google Scholar 

  12. Nie, Z., Su, Z., Sun, Z., Shi, T. and An, L., Macromol. Theory Simul., 2005, 14: 463.

    Article  CAS  Google Scholar 

  13. Cordeiro, C.E., J. Phys. Chem. Solids, 1999, 60: 1645.

    Article  CAS  Google Scholar 

  14. Chen, S.B., J. Chem. Phys., 2005, 123: 074702.

    Google Scholar 

  15. Hsu, H.P. and Grassberger, P., J. Chem. Phys., 2004, 120: 2034.

    Article  CAS  Google Scholar 

  16. Morrison, G. and Thirumalai, D., J. Chem. Phys., 2005, 122: 194907.

    Article  CAS  Google Scholar 

  17. Romiszowski, P. and Sikorski, A., Monatshefte Fur Chemie, 2006, 137: 969.

    Article  CAS  Google Scholar 

  18. Sikorski, A. and Romiszowski, P., J. Chem. Phys., 2004, 120: 7206.

    Article  CAS  Google Scholar 

  19. Romiszowski, P. and Sikorski, A., J. Molecular Modeling, 2005, 11: 335.

    Article  CAS  Google Scholar 

  20. van Vliet, J.H., Luyten, M.C. and ten Brinke, G., Macromolecules, 1992, 25: 3802.

    Article  Google Scholar 

  21. van Vliet, J.H. and ten Brinke, G., J. Chem. Phys., 1990, 93: 1436.

    Article  Google Scholar 

  22. van Vliet, J.H. and ten Brinke, G., Macromolecules, 1992, 25: 3695.

    Article  Google Scholar 

  23. Romiszowski, P. and Sikorski, A., Physica A — Statistical Mechanics and Its Applications, 2005, 357: 356.

    Article  CAS  Google Scholar 

  24. Chen, Y.L., Graham, M.D., de Pablo, J.J., Randall, G.C., Gupta, M. and Doyle, P.S., Phys. Rev. E, 2004, 70: 4.

    Google Scholar 

  25. Chaudhuri, D. and Mulder, B., Phys. Rev. E., 2011, 83: 031803.

    Google Scholar 

  26. Cifra, P., J. Chem. Phys, 2009, 131: 224903.

    Article  Google Scholar 

  27. Soong, R. and Macdonald, P.M., Langmuir, 2008, 24: 518.

    Article  CAS  Google Scholar 

  28. Dimitrov, D.I., Milchev, A., Binder, K., Klushin, L.I. and Skvortsov, A.M., J. Chem. Phys., 2008, 128: 234902.

    Article  CAS  Google Scholar 

  29. Romiszowski, P. and Sikorski, A., Acta Physica Polonica B, 2004, 35: 1535.

    CAS  Google Scholar 

  30. Uemura, H., Ichikawa, M. and Kimura, Y., Phys. Rev. E, 2010, 81: 051801.

    Article  Google Scholar 

  31. Hsieh, C.C., Balducci, A. and Doyle, P.S., Macromolecules, 2007, 40: 5196.

    Article  CAS  Google Scholar 

  32. Bonthuis, D.J., Meyer, C., Stein, D. and Dekker, C., Phys. Rev. Lett., 2008, 101: 108303.

    Article  Google Scholar 

  33. Tang, J., Levy, S.L., Trahan, D.W., Jones, J.J., Craighead, H.G. and Doyle, P.S., Macromolecules, 2010, 43: 7368.

    Article  CAS  Google Scholar 

  34. Brochard, F. and de Gennes, P.G., J. Chem. Phys., 1977, 67: 52.

    Article  CAS  Google Scholar 

  35. Milchev, A. and Binder, K., J. De Physique II, 1996, 6: 21.

    Article  CAS  Google Scholar 

  36. Hagita, K., Koseki, S. and Takano, H., J. Phys. Society Japan, 1999, 68: 2144.

    Article  CAS  Google Scholar 

  37. Cui, T., Ding, J. and Chen, J.Z.Y., Phys. Rev. E., 2008, 78: 061802.

    Article  Google Scholar 

  38. Kalb, J. and Chakraborty, B., arXiv:cond-mat, 2008, 0702152.

  39. Allen, M.P. and Tildesley, D.J., “Computer simulation of liquids”, Clarendon, Oxford, 1987.

    Google Scholar 

  40. Fu, C., Ouyang, W., Sun, Z. and An, L., J. Chem. Phys., 2007, 127: 044903.

  41. Rappaport, D.C., “The art of molecular dynamics simulation”, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  42. Starr, F.W., Schroder, T.B. and Glotzer, S.C., Macromolecules, 2002, 35: 4481.

    Article  CAS  Google Scholar 

  43. Galliero, G. and Volz, S., J. Chem. Phys., 2008, 128: 064505.

    Google Scholar 

  44. Fu, C., Sun, Z., Li, H., An, L. and Tong, Z., Polymer, 2008, 49: 3832.

    Article  CAS  Google Scholar 

  45. Luo, M.B., Polymer, 2007, 48: 7679.

    Article  CAS  Google Scholar 

  46. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J.R., J. Chem. Phys., 1984, 81: 3684.

    Article  CAS  Google Scholar 

  47. Dünweg, B. and Kremer, K., J. Chem. Phys., 1993, 99: 6983.

    Article  Google Scholar 

  48. Fu, C., Ouyang, W., Sun, Z., An, L., Li, H. and Tong, Z., Polymer, 2009, 50: 5142.

    Article  CAS  Google Scholar 

  49. Jeon, J. and Chun, M.S., J. Chem. Phys., 2007, 126: 154904.

    Article  Google Scholar 

  50. Cifra, P. and Bleha, T., Macromol. Theory Simul., 2000, 9: 555.

    Article  CAS  Google Scholar 

  51. Chen, Y., Wang, C. and Luo, M., Acta Polymerica Sinica (in Chinese) 2010, (9): 1082.

  52. Rubinstein, M. and Colby, R.H., “Polymer physics”, Oxford University Press, Oxford, 2003.

    Google Scholar 

  53. Milchev, A. and Binder, K., Europhys. Lett., 1994, 26: 671.

    Article  CAS  Google Scholar 

  54. Dima, R.I. and Thirumalai, D.J., Phys. Chem. B, 2004, 108: 6564.

    Article  CAS  Google Scholar 

  55. Rahman, A., Phys. Rev., 1964, 136: 405.

    Article  CAS  Google Scholar 

  56. Rudnick, J., Beldjenna, A. and Gaspari, G., J. Phys. A: Math. Gen., 1987, 20: 971.

    Article  Google Scholar 

  57. Bishop, M. and Saltiel, C.J., J. Chem. Phys., 1987, 88: 3976.

    Article  Google Scholar 

  58. de Gennes, P.G., “Scalling concepts in polymer physics”, Cornell University, Ithaca and London, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui-liu Fu  (付翠柳).

Additional information

The work was financially supported by the National Natural Science Foundation of China (Nos. 21074137, 21104082 and 50930001), the Fund for Creative Research Groups (No. 50921062), and National Basic Research Program of China (973 Program, 2012CB821500).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Cl., Sun, Zy. & An, Lj. The properties of a single polymer chain in solvent confined in a slit: A molecular dynamics simulation. Chin J Polym Sci 31, 388–398 (2013). https://doi.org/10.1007/s10118-013-1231-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-013-1231-x

Keywords

Navigation