Skip to main content
Log in

A modified Tikhonov regularization method for an axisymmetric backward heat equation

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

This paper deals with the inverse time problem for an axisymmetric heat equation. The problem is ill-posed. A modified Tikhonov regularization method is applied to formulate regularized solution which is stably convergent to the exact one. Meanwhile, a logarithmic-Hölder type error estimate between the approximate solution and exact solution is obtained by introducing a rather technical inequality and improving a priori smoothness assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Isakov, V.: Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 1998

    MATH  Google Scholar 

  2. Lavrentév, M. M., Romanov, V. G., Shishatskii, S. P.: Ill-posed Problems of Mathematical Physics and Analysis, AMS, Providence, Rhode Island, 1986

    Google Scholar 

  3. Hào, D. N.: A mollification method for ill-posed problems. Numer. Math., 68, 469–506 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Huang, Y., Zheng, Q.: Regularization for ill-posed Cauchy problems associated with generators of analytic semigroups. J. Differential Equations, 303(1), 38–54 (2004)

    Article  MathSciNet  Google Scholar 

  5. Ames, K. A., Gordon, W. C., Epperson, J. F., Oppenthermer, S. F.: A comparison of regularizations for an ill-posed problem. Math. Comput., 67, 1451–1471 (1998)

    Article  MATH  Google Scholar 

  6. Dang, D. T., Nguyen, N. I.: Regularization and error estimates for nonhomogeneous heat problems. Electron. J. Differential Equations, 1, 1–10 (2006)

    MathSciNet  Google Scholar 

  7. Mera, N. S.: The method of fundamental solutions for the backward heat conduction problem. Inv. Probl. Sci. Eng., 13(1), 79–98 (2005)

    Article  MathSciNet  Google Scholar 

  8. Cannon, J. R.: Some Numerical Results for the Solution of the Heat Equation Backward in Time, Proc. Adv. Sympos., Madison, Wis., 1966

  9. Tautenhahn, U., Schröter, T.: On optimal regularization methods for the backward heat equation. Z. Anal. Anw., 15, 475–493 (1996)

    MATH  Google Scholar 

  10. Xiong, X. T., Fu, C. L.: Error estimates on a backward heat equation by a wavelet dual least squares method. Int. J. Wavelets, Multiresoluyion Inform. Process, 5(3), 389–397 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mera, N. S., Elliott, L., Ingham, D. B., Lesnic, D.: An iterative boundary element method for solving the one dimensional backward heat conduction problem. Int. J. Heat Mass Transfer, 44, 1973–1946 (2001)

    Article  Google Scholar 

  12. Mera, N. S., Elliott, L., Ingham, D. B.: An inversion method with decreasing regularization for the backward heat conduction problem. Numer. Heat Transfer Part B Fundam., 42, 215–230 (2002)

    Article  Google Scholar 

  13. Fu, C. L., Xiong, X. T., Qian, Z.: Fourier regularization for a backward heat equation. J. Math. Anal. Appl., 331, 472–480 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu, C. S.: Group preserving scheme for backward heat conduction problems. Int. J. Heat Mass Transf., 47, 2567–2576 (2004)

    Article  MATH  Google Scholar 

  15. Liu, Y.: Cylinder Functions (in Chinese), Industry of National Defence Press, Beijing, 1983

    Google Scholar 

  16. Ou, Y. H., Hasanov, A., Liu, Z. H.: Inverse coefficient problems for nonlinear parabolic differential equations. Acta Mathematica Sinica, English Series, 24(10), 1617–1624 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Buong, N.: On a monotone ill-posed problem. Acta Mathematica Sinica, English Series, 21(5), 1001–1004 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cheng, W., Fu, C. L., Qian, Z.: Two regularization methods for a spherically symmetric inverse heat conduction problem. Appl. Math. Model., 32(4), 432–442 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Evans, L. C.: Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1998

    MATH  Google Scholar 

  20. Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions, Dover Publications, Inc., New York, 1972

    MATH  Google Scholar 

  21. Jiang, L. S., Chen, Y. J., Liu, X. H., Yi, F. K.: Lectures on Equation of Mathematical Physics (in Chinese), Higher Education Press, Beijing, 1995

    Google Scholar 

  22. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, Springer, New York, 1996

    MATH  Google Scholar 

  23. Carasso, A.: Determining surface temperature from interior observations. SIAM J. Appl. Math., 42, 558–574 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu Li Fu.

Additional information

Supported by National Natural Science Foundation of China (Grant No. 10671085), Fundamental Research Fund for Natural Science of Education Department of He’nan Province of China (Grant No. 2009B110007) and Hight-level Personnel fund of He’nan University of Technology (Grant No. 2007BS028)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, W., Fu, C.L. A modified Tikhonov regularization method for an axisymmetric backward heat equation. Acta. Math. Sin.-English Ser. 26, 2157–2164 (2010). https://doi.org/10.1007/s10114-010-8509-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-010-8509-5

Keywords

MR(2000) Subject Classification

Navigation