Skip to main content
Log in

Low regularity solution of the initial-boundary-value problem for the “good” Boussinesq equation on the half line

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

we study an initial-boundary-value problem for the “good” Boussinesq equation on the half line

$$ \left\{ \begin{gathered} \partial _t^2 u - \partial _x^2 u + \partial _x^4 u + \partial _x^2 u^2 = 0, t > 0, x > 0, \hfill \\ u\left( {0,t} \right) = h_1 \left( t \right), \partial _x^2 u\left( {0,t} \right) = \partial _t h_2 \left( t \right), \hfill \\ u\left( {x,0} \right) = f\left( x \right), \partial _t u\left( {x,0} \right) = \partial _x h\left( x \right) \hfill \\ \end{gathered} \right. $$

. The existence and uniqueness of low reguality solution to the initial-boundary-value problem is proved when the initial-boundary data (f, h, h 1, h 2) belong to the product space

$$ H^s \left( {\mathbb{R}^ + } \right) \times H^{s - 1} \left( {\mathbb{R}^ + } \right) \times H^{\tfrac{s} {2} + \tfrac{1} {4}} \left( {\mathbb{R}^ + } \right) \times H^{\tfrac{s} {2} + \tfrac{1} {4}} \left( {\mathbb{R}^ + } \right) $$

with \( 0 \leqslant s \leqslant \tfrac{1} {2} \) . The analyticity of the solution mapping between the initial-boundary-data and the solution space is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bona, L., Chen, M., Saut, J. C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media II: The nonlinear theory. Nonlinearity, 17, 925–952 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bona, L., Sachs, L.: Global existence of smooth solutions and stability theory of solitary waves for a generalized Boussinesq equation. Comm. Math. Phys., 118, 15–29 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Linares, F.: Global existence of small solutions for a generalized Boussinesq equation. J. Diff. Eqn., 106, 257–293 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Xue, R.: Local and global existence of solutions for the Cauchy problem of a generalized Boussinesq equation. J. Math. Anal. Appl., 316, 307–327 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Pani, A. K., Saranga, H. S.: Finite element Galerkin methods for the“good” Boussinesq equation. Nonlinear Analysis TMA, 29, 937–956 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Varlamov, V.: Long-time asymptotics for the damped Boussinesq equation in a disk. Electron. J. Diff. Eqn., 5, 285–298 (2000)

    MathSciNet  Google Scholar 

  7. Kenig, C. E., Ponce, G., Velo, G.: Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J., 40, 33–69 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kenig, C. E., Ponce, G., Velo, G.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math., 66, 527–620 (1993)

    Article  Google Scholar 

  9. Bona, L., Sun, S., Zheng, B.: A non-homogenous boundary-value problem for the Korteweg-de-Varies equation in a quarter plane. Trans. Amer. Math. Soc., 326, 427–490 (2001)

    Google Scholar 

  10. Zhang, B.: Taylor series expension for the solutions of the KdV equation with respective to their initial values. J. Funct. Anal., 129, 293–324 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lions, J. L., Magenes, E.: Non-Homogenous Boundary Value Problems and Applications I, Springer-Verlag, Berlin, 1972

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Ying Xue.

Additional information

Supported by National Natural Science Foundation of China (Grant No. 10931007) and Zhejiang Provincial Natural Science Foundation of China (Grant No. Y6090158)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, R.Y. Low regularity solution of the initial-boundary-value problem for the “good” Boussinesq equation on the half line. Acta. Math. Sin.-English Ser. 26, 2421–2442 (2010). https://doi.org/10.1007/s10114-010-7321-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-010-7321-6

Keywords

MR(2000) Subject Classification

Navigation