Skip to main content

Advertisement

Log in

Impacts of business-as-usual management on ecosystem services in European mountain ranges under climate change

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Mountain forests provide a multitude of services beyond timber production. In a large European project (ARANGE—Advanced multifunctional forest management in European mountain RANGEs), the impacts of climate change and forest management on ecosystem services (ES) were assessed. Here, we provide background information about the concept that was underlying the ARANGE project, and its main objectives, research questions, and methodological approaches are presented. The project focused on synergies and trade-offs among four key ES that are relevant in European mountain ranges: timber production, carbon storage, biodiversity conservation, and protection from gravitational natural hazards. We introduce the concept and selection of case study areas (CSAs) that were used in the project; we describe the concept of representative stand types that were developed to provide a harmonized representation of forest stands and forest management in the CSAs; we explain and discuss the climate data and climate change scenarios that were applied across the seven CSAs; and we introduce the linker functions that were developed to relate stand- and landscape-scale forest features from model simulations to ES provisioning in mountain forests. Finally, we provide a brief overview of the Special Feature, with an attempt to synthesize emerging response patterns across the CSAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bagnaresi U, Giannini R, Grassi G, Minotta G, Paffetti D, Pini Prato E et al (2002) Stand structure and biodiversity in mixed, uneven-aged coniferous forests in the eastern Alps. Forestry 75:357–364. doi:10.1093/forestry/75.4.357

    Article  Google Scholar 

  • Berger F (1997) Interaction forêt de montagne-risques naturels. Détermination de Zones d’Interventions Forestières Prioritaires—L’exemple du département de la Savoie, thèse de doctorat, Paris, Engref

  • Berger F, Dorren L (2007) Principle of the tool Rockfor.net for quantifying the rockfall hazard below a protection forest. Schweiz Z Forstwes 158(6):157–165. doi:10.3188/szf.2007.0157

    Article  Google Scholar 

  • Bugmann H (2001) A review of forest gap models. Clim Change 51:259–305. doi:10.1023/A:1012525626267

    Article  Google Scholar 

  • Cordonnier T, Courbaud B, Berger F, Franc A (2008) Permanence of resilience and protection efficiency in mountain Norway spruce forest stands: A simulation study. For Ecol Manage 256:347–354. doi:10.1016/j.foreco.2008.04.028

    Article  Google Scholar 

  • Cordonnier T, Berger F, Elkin C, Lamas T, Martinez M (2013) Models and linker functions (indicators) for ecosystem services, FP7-289437-ARANGE/D2.2. http://www.arange-project.eu/wp-content/uploads/ARANGE-D2.2_linkerfunctions.pdf

  • Déqué M, Somot S (2010) Weighted frequency distributions express modelling uncertainties in the ENSEMBLES regional climate experiments. Clim Res 44:195–209. doi:10.3354/cr00866

    Article  Google Scholar 

  • Dobler A, Ahrens B (2008) Precipitation by a regional climate model and bias correction in Europe and South Asia. Meteorol Z 17:499–509. doi:10.1127/0941-2948/2008/0306

    Article  Google Scholar 

  • Duncker PS, Raulund-Rasmussen K, Gundersen P, Katzensteiner K, De Jong J, Ravn HP, Smith M, Eckmüllner O, Spiecker H (2012) How forest management affects ecosystem services, including timber production and economic return: synergies and trade-offs. Ecol Soc 17(4):50. doi:10.5751/ES-05066-170450

    Google Scholar 

  • Dupire S, Bourrier F, Monnet J-M, Bigot S, Borgniet L, Berger F, Curt T (2016) Novel quantitative indicators to characterize the protective effect of mountain forests against rockfall. Ecol Indic 67:98–107. doi:10.1016/j.ecolind.2016.02.023

    Article  Google Scholar 

  • EEA (ed) (2010) Europe’s ecological backbone: recognising the true value of our mountains. European Environmental Agency, Technical Report 6/2010. doi:10.2800/43450

  • Elkin C, Gutierrez AG, Leuzinger S, Manusch C, Temperli C, Rasche L, Bugmann H (2013) A 2 C warmer world is not safe for ecosystem services in the European Alps. Global Change Biol 19:1827–1840. doi:10.1111/gcb.12156

    Article  Google Scholar 

  • Fabrika M, Durský J (2005) Algorithms and software solution of thinning models for SIBYLA growth simulator. J For Sci 51:431–445

    Google Scholar 

  • Fan ZF, Shifley SR, Spetich MA, Thompson FR, Larsen DR (2003) Distribution of cavity trees in midwestern old-growth and second-growth forests. Can J For Res 33:1481–1494. doi:10.1139/X03-068

    Article  Google Scholar 

  • Finger D, Heinrich G, Gobiet A, Bauder A (2012) Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century. Water Resour Res 48:W02521. doi:10.1029/2011WR010733

    Google Scholar 

  • Forrester DI, Bauhus J (2016) A review of processes behind diversity—productivity relationships in forests. Curr For Rep 2:45–61. doi:10.1007/s40725-016-0031-2

    Article  Google Scholar 

  • Frehner M, Wasser B, Schwitter R (2005) Nachhaltigkeit und Erfolgskontrolle im Schutzwald. Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfunktion. © OFEV, Bern, Switzerland

  • Gao T, Hedblom M, Emilsson T, Nielsen AB (2014) The role of forest stand structure as biodiversity indicator. For Ecol Manag 330:82–93. doi:10.1016/j.foreco.2014.07.007

    Article  Google Scholar 

  • Gauquelin X, Courbaud B (eds) (2006) Guide des sylvicultures de montagne des Alpes du Nord Françaises. French National Forest Office, Paris

  • Ghil M (2002) Natural climate variability. In: Munn RE (ed) Encyclopedia of global environmental change, volume 1, the earth system: physical and chemical dimensions of global environmental change. Wiley, Chichester

    Google Scholar 

  • Giorgi F, Coppola E (2007) European climate-change oscillation (ECO). Geophys Res Lett 34:L21703. doi:10.1029/2007GL031223

    Article  Google Scholar 

  • Grove SJ (2002) Tree basal area and dead wood as surrogate indicators of saproxylic insect faunal integrity: a case study from the Australian lowland tropics. Ecol Indic 1:171–188. doi:10.1016/S1470-160X(01)00016-4

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein-Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. JGR (Atmospheres) 113(1–12):D20119. doi:10.1029/2008JD10201

    Article  Google Scholar 

  • Heinrich G, Gobiet A, Mendlik T (2014) Extended regional climate model projections for Europe until the mid-twentyfirst century: combining ENSEMBLES and CMIP3. Clim Dyn 42(1–2):521–535. doi:10.1007/s00382-013-1840-7

    Article  Google Scholar 

  • Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts (Ensembles). EOS Trans AGU 85(52):566. doi:10.1029/2004EO520005

    Article  Google Scholar 

  • IPCC (2006) Guidelines for National Greenhouse Gas Inventories. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html

  • Irauschek F, Rammer W, Lexer MJ (2015) Can current management maintain forest landscape multifunctionality in the Eastern Alps in Austria under climate change? Reg Environ Change. doi:10.1007/s10113-015-0908-9

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375. doi:10.1111/j.2006.0030-1299.14714.x

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J. Clim 23:2739–2758. doi:10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Lachat T, Bütler R (2007) Gestion des vieux arbres et du bois mort: Îlots de sénescence, arbres-habitat et métapopulations saproxyliques. Mandat de l’Office fédéral de l’environnement, OFEV. http://www.wsl.ch/forschung/forschungsunits/walddynamik/diversitaet/totholzmanagement/rapport_bafu_2007.pdf

  • Lafond V, Cordonnier T, Courbaud B (2015) Reconciling biodiversity conservation and timber production in uneven-aged mountain forests: identification of ecological intensification pathways. Envir Manag 56:1118–1133. doi:10.1007/s00267-015-0557-2

    Article  Google Scholar 

  • Lämås T, Eriksson LO (2003) Analysis and planning systems for multi-resource, sustainable forestry—the Heureka research programme at SLU. Can J For Res 33:500–508. doi:10.1139/cjfr-2016-0068

    Article  Google Scholar 

  • Larrieu L, Cabanettes A (2012) Species, live status, and diameter are important tree features for diversity and abundance of tree microhabitats in subnatural montane beech–fir forests. Can J For Res 42:1433–1445. doi:10.1139/x2012-077

    Article  Google Scholar 

  • Larrieu L, Cabanettes A, Delarue A (2012) Impact of silviculture on dead wood and on the distribution and frequency of tree microhabitats in montane beech-fir forests of the Pyrenees. Eur J For Res 131:773–786. doi:10.1007/s10342-011-0551-z

    Article  Google Scholar 

  • Lassauce A, Paillet Y, Jactel H, Bouget C (2011) Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol Indic 11:1027–1039. doi:10.1016/j.ecolind.2011.02.004

    Article  Google Scholar 

  • Lexer MJ, Hönninger K (2001) A modified 3D-patch model for spatially explicit simulation of vegetation composition in heterogeneous landscapes. For Ecol Manage 144:43–65. doi:10.1016/S0378-1127(00)00386-8

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themessl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:3003. doi:10.1029/2009RG000314

    Article  Google Scholar 

  • Martikainen P, Siitonen J, Punttila P, Kaila L, Rauh J (2000) Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biol Conserv 94:199–209. doi:10.1016/S0006-3207(99)00175-5

    Article  Google Scholar 

  • Maurer EP, Pierce DW (2014) Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean. Hydrol Earth Syst Sci 18(3):915–925. doi:10.5194/hess-18-915-2014

    Article  Google Scholar 

  • McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: its definition and measurement. For Ecol Manag 218:1–24. doi:10.1016/j.foreco.2005.08.034

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Michel AK, Winter S (2009) Tree microhabitat structures as indicators of biodiversity in Douglas-fir forests of different stand ages and management histories in the Pacific Northwest, USA. For Ecol Manag 257:1453–1464. doi:10.1016/j.foreco.2008.11.027

    Article  Google Scholar 

  • Mina M, Bugmann H, Klopcic M et al (2015) Accurate modeling of harvesting is key for projecting future forest dynamics: a case study in the Slovenian mountains. Reg Environ Change. doi:10.1007/s10113-015-0902-2

  • Müller J, Butler R (2010) A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur J For Res 129:981–992. doi:10.1007/s10342-010-0400-5

    Article  Google Scholar 

  • Müller J, Bussler H, Kneib T (2008) Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in Southern Germany. J Insect Conserv 12:107–124. doi:10.1007/s10841-006-9065-2

    Article  Google Scholar 

  • Nabuurs G-J et al (2003) LUCF sector good practice guidance, Chap 3. In: Penman J et al (eds.), Good practice guidance for land use, land use change and forestry. Special Report of the IPCC, WMO, Geneva. http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf

  • Nadrowski K, Wirth C, Scherer-Lorenzen M (2010) Is forest diversity driving ecosystem function and service? Curr Opin Environ Sust 2:75–79. doi:10.1016/j.cosust.2010.02.003

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Raihi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. www.grida.no/climate/ipcc/emission

  • Nilsson SG, Niklasson M, Hedin J et al (2002) Densities of large living and dead trees in old-growth temperate and boreal forests. For Ecol Manag 161:189–204. doi:10.1016/S0378-1127(01)00480-7

    Article  Google Scholar 

  • Pardos M, Pérez S, Calama R et al (2016) Ecosystem service provision, management systems and climate change in Valsaín forest, central Spain. Reg Environ Change. doi:10.1007/s10113-016-0985-4

  • Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schöner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430. doi:10.1038/nclimate2563

    Article  Google Scholar 

  • Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theoret Appl Climatol 99(1–2):187–192. doi:10.1007/s00704-009-0134-9

    Article  Google Scholar 

  • Pietsch SA, Hasenauer H, Thornton PE (2005) BGC-model parameters for tree species growing in central European forests. For Ecol Manage 211:264–295. doi:10.1016/j.foreco.2005.02.046

    Article  Google Scholar 

  • Pommerening A (2002) Approaches to quantify forest structure. Forestry 75:305–324. doi:10.1093/forestry/75.3.305

    Article  Google Scholar 

  • Prein AF, Gobiet A, Truhetz H (2011) Analysis of uncertainty in large scale climate change projections over Europe. Meteorol Z 20(4):383–395. doi:10.1127/0941-2948/2011/0286

    Article  Google Scholar 

  • Pretzsch H, Rais A (2016) Wood quality in complex forests versus even-aged monocultures: review and perspectives. Wood Sci Technol 50:845–880. doi:10.1007/s00226-016-0827-z

    Article  CAS  Google Scholar 

  • Price MF, Lysenko I, Gloersen E (2004) Delineating Europe’s mountains. Rev Géogr Alp 92:75–86. doi:10.3406/rga.2004.2293

    Article  Google Scholar 

  • Price MF, Gratzer G, Duguma LA, Thomas K, Maselli D, Romeo R (eds) (2011) Mountain forests in a changing world—realizing values, addressing challenges. FAO/MPS, Rome

    Google Scholar 

  • Racsko P, Szeidl L, Semenov M (1991) A serial approach to local stochastic weather models. Ecol Model 57(1–2):27–41. doi:10.1016/0304-3800(91)90053-4

    Article  Google Scholar 

  • Ravazzani G, Ghilardi M, Mendlik T, Gobiet A, Corbari C, Mancini M (2014) Investigation of climate change impact on water resources for an alpine basin in Northern Italy: implications for evapotranspiration modeling complexity. PLoS ONE 9(10):e109053. doi:10.1371/journal.pone.0109053

    Article  Google Scholar 

  • Redon M, Luque S, Gosselin F, Cordonnier T (2014) Is generalisation of uneven-aged management in mountain forests the key to improve biodiversity conservation within forest landscape mosaics? Ann For Sci 71:751–760. doi:10.1007/s13595-014-0371-7

    Article  Google Scholar 

  • Rouvinen S, Kuuluvainen T (2005) Tree diameter distributions in natural and managed old Pinus sylvestris-dominated forests. For Ecol Manag 208:45–61. doi:10.1016/j.foreco.2004.11.021

    Article  Google Scholar 

  • Running SW, Nemani RR, Hungerford RD (1987) Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Can J For Res 17:472–483. doi:10.1139/x87-081

    Article  Google Scholar 

  • Schreiber B, deCalesta DS (1992) The relationship between cavity-nesting birds and snags on clearcuts in western Oregon. For Ecol Manag. 50:299–316. doi:10.1016/0378-1127(92)90344-9

    Article  Google Scholar 

  • Schumacher S, Bugmann H (2006) The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Global Change Biol 12:1435–1450. doi:10.1111/J.1365-2486.2006.01188.X

    Article  Google Scholar 

  • Schwenk WS, Donovan TM, Keeton WS, Nunery JS (2012) Carbon storage, timber production, and biodiversity: comparing ecosystem services with multi-criteria decision analysis. Ecol Appl 22:1612–1627. doi:10.1890/11-0864.1

    Article  Google Scholar 

  • Seidl R, Rammer W, Jäger D, Currie WS, Lexer M (2007) Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. For Ecol Manag 248:64–79. doi:10.1016/j.foreco.2007.02.035

    Article  Google Scholar 

  • Semenov MA, Barrow EM (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Change 35(4):397–414. doi:10.1023/A:1005342632279

    Article  Google Scholar 

  • Smith PC, Heinrich G, Suklitsch M, Gobiet A, Stoffel M, Fuhrer J (2014) Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change. Clim Change 127(3–4):521–534. doi:10.1007/s10584-014-1263-4

    Article  Google Scholar 

  • Stainforth DA, Allen MR, Tredger ER, Smith LA (2007) Confidence, uncertainty and decision-support relevance in climate predictions. Philos Trans R Soc A 365:2145–2161. doi:10.1098/rsta.2007.2074

    Article  CAS  Google Scholar 

  • Staudhammer CL, LeMay VM (2001) Introduction and evaluation of possible indices of stand structural diversity. Can J For Res 31:1105–1115. doi:10.1139/cjfr-31-7-1105

    Article  Google Scholar 

  • Stoffel M, Mendlik T, Schneuwly-Bollschweiler M, Gobiet A (2014) Possible impacts of climate change on debris-flow activity in the Swiss Alps. Clim Change 122(1–2):141–155. doi:10.1007/s10584-013-0993-z

    Article  Google Scholar 

  • Themeßl MJ, Gobiet A, Leuprecht A (2011) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31(10):1530–1544. doi:10.1002/joc.2168

    Article  Google Scholar 

  • Thornton PE, Running SW (1999) An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric For Meteorol 93(4):211–228. doi:10.1016/S0168-1923(98)00126-9

    Article  Google Scholar 

  • Thornton PE, Hasenauer H, White MA (2000) Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: an application over complex terrain in Austria. Agric For Meteorol 104(4):255–271. doi:10.1016/S0168-1923(00)00170-2

    Article  Google Scholar 

  • Thurnher, C., 2013. ARANGE Deliverable D1.1Historic Climate, ARANGE Document FP7-289437-ARANGE/D1.1, 13 pp. Institute for Silviculture and Forest Engineering, University of Life Sciences Vienna, Vienna, Austria. http://www.arange-project.eu/?page_id=601

  • Hlásny, T., Barka, I., Kulla, L. et al (2015) Sustainable forest management in a mountain region in the Central Western Carpathians, northeastern Slovakia: the role of climate change. Reg Environ Change. doi:10.1007/s10113-015-0894-y

  • Truhetz H (2013) ARANGE deliverable D1.4—climate change scenarios for case study regions, ARANGE document FP7-289437-ARANGE/D1.4. Wegener Center for Climate and Global Change, University of Graz, Graz, Austria. http://www.arange-project.eu/?page_id=601

  • Vallet P, Dhôte J-F, Moguédec GL, Ravart M, Pignard G (2006) Development of total aboveground volume equations for seven important forest tree species in France. For Ecol Manag 229:98–110. doi:10.1016/j.foreco.2006.03.013

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter

    Google Scholar 

  • Vuidot A, Paillet Y, Archaux F, Gosselin F (2011) Influence of the tree characteristics and forest management on tree microhabitats. Biol Conserv 144:441–450. doi:10.1016/j.biocon.2010.09.030

    Article  Google Scholar 

  • Wang W, Lei X, Ma Z, Kneeshaw DD, Peng C (2011) Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada. For Sci 57:506–515

    Google Scholar 

  • Wilcke RAI, Mendlik T, Gobiet A (2013) Multi-variable error correction of regional climate models. Clim Change 120(4):871–887. doi:10.1007/s10584-013-0845-x

    Article  Google Scholar 

  • Winter S, Möller GC (2008) Microhabitats in lowland beech forests as monitoring tool for nature conservation. For Ecol Manag 255:1251–1261. doi:10.1016/j.foreco.2007.10.029

    Article  Google Scholar 

  • Zilliox C, Gosselin F (2014) Tree species diversity and abundance as indicators of understory diversity in French mountain forests: variations of the relationship in geographical and ecological space. For Ecol Manag 321:105–116. doi:10.1016/j.foreco.2013.07.049

    Article  Google Scholar 

  • Zlatanov T, Elkin C, Irauschek F, Lexer MJ (2015) Impact of climate change on vulnerability of forests and ecosystem service supply in Western Rhodopes Mountains. Reg Environ Change. doi:10.1007/s10113-015-0869-z

Download references

Acknowledgements

Support for this study was provided by the project “Advanced Multifunctional Forest Management in European Mountain Ranges (ARANGE)” within the European commission’s 7th Framework Program, grant agreement no. 289437.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Bugmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugmann, H., Cordonnier, T., Truhetz, H. et al. Impacts of business-as-usual management on ecosystem services in European mountain ranges under climate change. Reg Environ Change 17, 3–16 (2017). https://doi.org/10.1007/s10113-016-1074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-1074-4

Keywords

Navigation