Skip to main content

Advertisement

Log in

Fine-scale spatial patterns of the Tertiary relict Zelkova abelicea (Ulmaceae) indicate possible processes contributing to its persistence to climate changes

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

In this paper, the fine-scale spatial patterns of the Tertiary relict Zelkova abelicea (Lam.) Boiss. were studied (1) to reveal processes that contributed to its persistence to climate changes and (2) to assist future conservation planning, with the purpose of shifting the attention of conservation practitioners from patterns to processes. Results of the fine-scale spatial patterns of Z. abelicea indicate that the species tolerates disturbance and/or tracks changes resulting from disturbance in the range of its distribution through morphological and reproductive plasticity. In addition, our study indicates that Z. abelicea populations are conserved in the absence of metapopulation structure and that the species participates in plant–plant interactions through facilitation processes. Hence, the persistence of the species to climate changes seems to be more complicated and multifactorial than a linear and plain view of species survival in climate refugial areas, and therefore calls for a consideration of the processes revealed in this paper in future conservation planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida-Neto M, Guimaraes P, Guimarães PR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239

    Article  Google Scholar 

  • Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539

    Article  Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  CAS  Google Scholar 

  • Barrows CW, Murphy-Mariscal ML (2012) Modeling impacts of climate change on Joshua trees at their southern boundary: how scale impacts predictions. Biol Conserv 152:29–36

    Article  Google Scholar 

  • Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Modell 186:251–270

    Article  Google Scholar 

  • Béguinot A (1929) Illustrazioni delle filliti quaternarie dei travertini palermitani conservate nel Museo di Geologia della R. Università di Palermo. Archivio Botanico 5:143–173

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  Google Scholar 

  • Bertness MD, Callaway RM (1994) Positive interactions in communities. TREE 9:191–193

    CAS  Google Scholar 

  • Boyd A (2009) Relict conifers from the mid-Pleistocene of Rhodes, Greece. Hist Biol 21:1–15

    Article  Google Scholar 

  • Brooksbank K, Veneklaas EJ, White DA, Carter JL (2011) The fate of hydraulically redistributed water in a semi-arid zone eucalyptus species. Tree Physiol 31:649–658

    Article  Google Scholar 

  • Burnham RJ (1986) Foliar morphological analysis of the Ulmoideae (Ulmaceae) from the Early Tertiary of western North America. Palaeontogr Abteilung B 201:135–167

    Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    Article  Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  CAS  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1309

    Article  CAS  Google Scholar 

  • Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant–plant interactions. Oecologia 95:565–574

    Google Scholar 

  • De Paola M, Franco A, Macchia F, Forte L (1997) Plant macrofossils in Pleistocenic volcanoclastic deposit near Tursi (Basilicata). Atti Giornata di Studi in ricordo di Daria Bertolani Marchetti (Formigine, 18 maggio 1996), Aedes Muratoriana, Modena

  • Denk T, Grimm GW (2005) Phylogeny and biogeography of Zelkova (Ulmaceae sensu stricto) as inferred from leaf morphology, ITS sequence data and the fossil record. Bot J Linn Soc 147:129–157

    Article  Google Scholar 

  • Denk T, Frotzler N, Davitashvili N (2001) Vegetational patterns and distribution of relict taxa in humid temperate forests and wetlands of Georgia (Transcaucasia). Biol J Linn Soc 72:287–332

    Article  Google Scholar 

  • Di Pasquale G, Garfì G (1998) Evolution comparée des structures des peuplements mélangés à Quercus suber et Quercus pubescens après elimination du pâturage en forêt de Pisano (Sicile sud-orientale). Ecol Mediterr 24:15–25

    Google Scholar 

  • Di Pasquale G, Garfì G, Quézel P (1992) Sur la présence d’un Zelkova nouveau en Sicile sud-orientale (Ulmaceae). Biocosme Mésogéen 8–9:401–409

    Google Scholar 

  • Egli B (1997) A project for the preservation of Zelkova abelicea (Ulmaceae), a threatened endemic tree species from the mountains of Crete. Bocconea 5:505–510

    Google Scholar 

  • Elzinga CL, Salzer DW, Willoughby JW (1998) Measuring and monitoring plant populations. U.S Department of the Interior, Bureau of Land Management, Denver CO

    Google Scholar 

  • European Commission (2007) Interpretation manual of European Union Habitats, version EUR 27, EC/DG Environment. p 142

  • Fazan L, Stoffel M, Frey DJ, Pirintsos S, Kozlowski G (2012) Small does not mean young: age estimation of severely browsed trees in anthropogenic Mediterranean landscapes. Biol Conserv 153:97–100

    Article  Google Scholar 

  • Fineschi S, Anzidei M, Cafasso D, Cozzolino S, Garfì G, Pastorelli R, Salvini D, Taurchini D, Vendramin GG (2002) Molecular markers reveal a strong genetic differentiation between two European relic tree species: Zelkova abelicea (Lam.) Boissier and Z. sicula Di Pasquale, Garfi & Quézel (Ulmaceae). Conserv Genet 3:145–153

    Article  CAS  Google Scholar 

  • Fineschi S, Cozzolino S, Migliaccio M, Vendramin GG (2004) Genetic variation of relic tree species: the case of Mediterranean Zelkova abelicea (Lam.) Boissier and Z. sicula Di Pasquale, Garfì and Quézel (Ulmaceae). Forest Ecol Manag 197:273–278

    Article  Google Scholar 

  • Follieri M, Magri D, Sadori L (1986) Late Pleistocene Zelkova extinction in central Italy. New Phytol 103:269–273

    Article  Google Scholar 

  • Follieri M, Magri D, Sadori L (1989) Pollen stratigraphical synthesis from valle di Castiglione (Roma). Quat Int 3/4:1040–6182

    Article  Google Scholar 

  • Freckleton RP, Watkinson AR (2002) Large-scale spatial dynamics of plants: metapopulations, regional ensembles and patchy populations. J Ecol 90:419–434

    Article  Google Scholar 

  • Garfì G, Buord S (2012) Relict species and the challenges for conservation: the emblematic case of Zelkova sicula Di Pasquale, Garfi et Quézel and the efforts to save it from extinction. Biodivers J 3:281–296

    Google Scholar 

  • Garfì G, Carimi F, Pasta S, Rühl J, Trigila S (2011) Additional insights on the ecology of the relic tree Zelkova sicula Di Pasquale, Garfì et Quézel (Ulmaceae) after the finding of new population. Flora 206:407–417

    Article  Google Scholar 

  • Gavilán RG, Sánchez-Mata D, Escudero A, Rubio A (2002) Spatial structure and interspecific interactions in Mediterranean high mountain vegetation (Sistema Central, Spain). Isral J Plant Sci 50:217–228

    Article  Google Scholar 

  • Godefroid S, Piazza C, Rossi G et al (2011) How successful are plant species reintroductions? Biol Conserv 144:672–682

    Article  Google Scholar 

  • Gómez-Aparicio L, Zamora R, Gómez JM, Hódar JA, Castro J, Baraza E (2004) Applying plant facilitation to forest restoration in Mediterranean ecosystems: a meta-analysis of the use of shrubs as nurse plants. Ecol Appl 14:1128–1138

    Article  Google Scholar 

  • Gómez-Aparicio L, Gómez JM, Zamora R, Boettinger JL (2005) Canopy vs. soil effects of shrubs facilitating tree seedlings in Mediterranean montane ecosystems. J Veg Sci 16:191–198

    Article  Google Scholar 

  • Grimm GW, Denk T, Hemleben V (2007) Evolutionary history and systematics of Acer section Acer–a case study of low-level phylogenetics. Plant Syst Evol 267:215–253

    Article  Google Scholar 

  • Hampe A, Jump AS (2011) Climate relicts: past, present, future. Annu Rev Ecol Evol Syst 42:313–333

    Article  Google Scholar 

  • Hanski I (1991) Single-species metapopulation dynamics: concepts, models and observations. Biol J Linn Soc 42:17–38

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777

    Article  Google Scholar 

  • Higgins MD, Higgins R (1996) A geological companion to Greece and the Aegean. Gerald Duckworth & Co, London

    Google Scholar 

  • Hill MO (1979) TWINSPAN—A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ecology and Systematics. Cornell University, Ithaca, New York

    Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regresssion. Wiley, New York

    Book  Google Scholar 

  • Jeltsch F, Moloney KA, Schurr FM, Kochy M, Schwager M (2008) The state of plant population modelling in light of environmental change. Perspect Plant Ecol Evol Syst 9:171–190

    Article  Google Scholar 

  • Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecol Biogeogr 21:393–404

    Article  Google Scholar 

  • Kozlowski G, Frey D, Fazan L, Egli B, Pirintsos S (2012) Zelkova abelicea. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. www.iucnredlist.org. Downloaded on 8 May 2013

  • Kozlowski G, Frey D, Fazan L, Egli B, Bétrisey S, Gratzfeld J, Garfì G, Pirintsos S (2013) The Tertiary relict tree Zelkova abelicea (Ulmaceae): distribution, population structure and conservation status on Crete. Oryx. doi:10.1017/S0030605312001275

  • Levin SA (1992) The problem of pattern and scale in Ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Levin SA, Paine RT (1974) Disturbance, patch formation, and community structure. PNAS 71:2744–2747

    Article  CAS  Google Scholar 

  • Loss S, Terwilliger LA, Peterson AC (2011) Assisted colonization: integrating conservation strategies in the face of climate change. Biol Conserv 144:92–100

    Article  Google Scholar 

  • Mackey RL, Currie DJ (2001) The diversity-disturbance relationship: is it generally strong and peaked? Ecology 82:3479–3492

    Google Scholar 

  • Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah L (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol 20:538–548

    Article  Google Scholar 

  • McCune B, Mefford MJ (1999) Multivariate Analysis of Ecological Data. Version 4.10. MjM Software, Gleneden Beach, Oregon, USA

  • Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345

    Article  Google Scholar 

  • Mendoza I, Zamora R, Castro J (2009) A seeding experiment for testing tree-community recruitment under variable environments: implications for forest regeneration and conservation in Mediterranean habitats. Biol Conserv 142:1491–1499

    Article  Google Scholar 

  • Morrison LW (2013) Nestedness in insular floras: spatiotemporal variation and underlying mechanisms. J Plant Ecol. doi:10.1093/jpe/rtt002

  • Öztürk M, Çelik A, Güvensen A, Hamzaoğlu E (2008) Ecology of Tertiary relict endemic Liquidambar orientalis Mill. forests. Forest Ecol Manag 256:510–518

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Petit RJ, Hampe A, Cheddadi R (2005) Climate changes and tree phylogeography in the Mediterranean. Taxon 54:877–885

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Proulx M, Mazumder A (1998) Reversal of grazing impact on plant species richness in nutrient-poor vs nutrient-rich ecosystems. Ecology 79:2581–2592

    Article  Google Scholar 

  • Pulido F, Valladares F, Calleja JA, Moreno G, González-Bornay G (2008) Tertiary relict trees in a Mediterranean climate: abiotic constraints on the persistence of Prunus lusitanica at the eroding edge of its range. J Biogeogr 35:1425–1435

    Article  Google Scholar 

  • Quero JL, Gómez-Aparicio L, Zamora R, Maestre FT (2008) Shifts in the regeneration niche of an endangered tree (Acer opalus ssp. granatense) during ontogeny. Basic Appl Ecol 9:635–644

    Article  Google Scholar 

  • Randin CF, Engler R, Normand S, Zappa M, Zimmermann NE, Pearman PB, Vitoz P, Thuiller W, Guisan A (2009) Climate change and plant distribution: local models predict high elevation persistence. Global Change Biol 15:1557–1569

    Article  Google Scholar 

  • Richter S, Kipfer T, Wohlgemuth T, Calderón Guerrero C, Ghazoul J, Moser B (2012) Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia 169:269–279

    Article  Google Scholar 

  • Scholz FG, Bucci SJ, Hoffmann WA, Meinzer FC, Goldstein G (2010) Hydraulic lift in a Neotropical savanna: experimental manipulation and model simulations. Agric Forest Meteorol 150:629–639

    Article  Google Scholar 

  • Schwartz MW (2012) Using niche models with climate projections to inform conservation management decisions. Biol Conserv 155:149–156

    Article  Google Scholar 

  • Søndergaard P, Egli BR (2006) Zelkova abelicea (Ulmaceae) in Crete: floristics, ecology, propagation and threats. Willdenowia 36:317–322

    Article  Google Scholar 

  • Stein BA, Shaw MR (2013) Biodiversity conservation for a climate-altered future. In: Moser SC, Boykoff MT (eds) Successful adaptation to climate change: linking science and policy in a rapidly changing world. Routledge, London, pp 50–66

    Google Scholar 

  • Stoll P, Weiner J (2001) A neighborhood view of interactions among individual plants. In: Dieckmann U, Law R, Metz JAJ (eds) The geometry of ecological interactions. Simplifying spatial complexity. Cambridge University Press, Cambridge, pp 11–27

    Google Scholar 

  • Stork NE (2010) Re-assessing current extinction rates. Biodivers Conserv 19:357–371

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice C (2005) Climate change threats to plant diversity in Europe. PNAS 102:8245–8250

    Article  CAS  Google Scholar 

  • Thuiller W, Albert C, Araújo MB et al (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152

    Article  Google Scholar 

  • Ulrich W, Almeida-Neto M, Gotelli NJ (2009) A consumer’s guide to nestedness analysis. Oikos 118:3–17

    Article  Google Scholar 

  • Valiente-Banuet A, Vital A, Verdú M, Callaway RM (2006) Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. PNAS 103:16812–16817

    Article  CAS  Google Scholar 

  • Valladares F (2008) A mechanistic view of the capacity of forest to cope with climate change. In: Bravo F, May VL, Jandl R, Gadow Kv (eds) Managing forest ecosystems: the challenge of climate change. Springer, Berlin, pp 15–40

    Chapter  Google Scholar 

  • Valladares F, Gianoli E (2007) How much ecology do we need to know to restore Mediterranean ecosystems? Restor Ecol 15:363–368

    Article  Google Scholar 

  • Valladares F, Balaguer L, Martinez-Ferri E, Perez-Corona E, Manrique E (2002) Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytol 156:457–467

    Article  Google Scholar 

  • Van der Wiel AM, Wijmstra TA (1987) Palynology of the lower part (78–120 m) of the core Tenaghi Philippon II, Middle Pleistocene of Macedonia, Greece. Rev Palaeob Palyno 52:73–88

    Article  Google Scholar 

  • Veech JA (2013) A probabilistic model for analysing species co-occurrence. Global Ecol Biogeogr 22:252–260

    Article  Google Scholar 

  • Vrochidou A-EK, Tsanis IK (2012) Assessing precipitation distribution impacts on droughts on the island of Crete. Nat Hazards Earth Syst Sci 12:1159–1171

    Article  Google Scholar 

  • Wang Y-F, Ferguson DK, Zetter R, Denk T, Garfì G (2001) Leaf architecture and epidermal characters in Zelkova, Ulmaceae. Bot J Linn Soc 136:255–265

    Article  Google Scholar 

  • Willis KJ, Bhagwat SA (2009) Biodiversity and climate change. Science 326:806–807

    Article  CAS  Google Scholar 

  • Wisz MS, Pottier J, Kissling WD et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30

    Article  Google Scholar 

  • Wright DH, Patterson BD, Mikkelson GM, Cutler A, Atmar W (1998) A comparative analysis of nested subset patterns of species composition. Oecologia 113:1–20

    Article  Google Scholar 

  • Zheng-yi W, Raven PH (eds) (2003) Zelkova. Flora of China. Vol. 5. Ulmaceae–Basellaceae, Missouri Botanical Garden Press, St. Louis

Download references

Acknowledgments

We thank Vaios Kalogrias (University of Crete) for his help with GIS, we thank Robin Pakeman (Macaulay Institute) for his suggestions and we are grateful for the very constructive comments of two reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stergios Pirintsos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2041 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosque, M., Adamogianni, MI., Bariotakis, M. et al. Fine-scale spatial patterns of the Tertiary relict Zelkova abelicea (Ulmaceae) indicate possible processes contributing to its persistence to climate changes. Reg Environ Change 14, 835–849 (2014). https://doi.org/10.1007/s10113-013-0544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-013-0544-1

Keywords

Navigation