Skip to main content
Log in

Martingale characterizations of risk-averse stochastic optimization problems

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper addresses risk awareness of stochastic optimization problems. Nested risk measures appear naturally in this context, as they allow beneficial reformulations for algorithmic treatments. The reformulations presented extend usual dynamic equations by involving risk awareness in the problem formulation. Nested risk measures are built on risk measures, which originate by conditioning on the history of a stochastic process. We derive martingale properties of these risk measures and use them to prove continuity. It is demonstrated that stochastic optimization problems, which incorporate risk awareness via nesting risk measures, are continuous with respect to the natural distance governing these optimization problems, the nested distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. Birkhäuser Verlag, Basel (2005). https://doi.org/10.1007/978-3-7643-8722-8

    Book  MATH  Google Scholar 

  2. Artzner, P., Delbaen, F., Heath, D.: Thinking coherently. Risk 10, 68–71 (1997)

    Google Scholar 

  3. Brenier, Y.: Décomposition polaire et réarrangement monotone des champs de vecteurs. Comptes Rendus l’Acad. Sci. Paris Sér. I Math. 305(19), 805–808 (1987)

    MATH  Google Scholar 

  4. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991). https://doi.org/10.1002/cpa.3160440402

    Article  MathSciNet  MATH  Google Scholar 

  5. Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. North-Holland Publishing Co., Amsterdam (1988). https://projecteuclid.org/euclid.bams/1183546371

  6. Dentcheva, D., Ruszczyński, A.: Time-coherent risk measures for continuous-time Markov chains. SIAM J. Financ. Math. 9(2), 690–715 (2018a). https://doi.org/10.1137/16m1063794

    Article  MathSciNet  MATH  Google Scholar 

  7. Dentcheva, D., Ruszczyński, A.: Risk forms: representation, disintegration, and application to partially observable two-stage systems, unpublished (2018b). https://arxiv.org/abs/1807.02300

  8. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Springer, Berlin (2006). https://doi.org/10.1007/0-387-31071-1

    Book  MATH  Google Scholar 

  9. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time. de Gruyter Studies in Mathematics 27. Berlin, Boston, De Gruyter (2004). ISBN 978-3-11-046345-3. 10.1515/9783110218053. http://books.google.com/books?id=cL-bZSOrqWoC

  10. Girardeau, P., Leclère, V., Philpott, A.B.: On the convergence of decomposition methods for multistage stochastic convex programs. Math. Oper. Res. 40(1), 1–16 (2014). https://doi.org/10.1287/moor.2014.0664

    Article  MathSciNet  MATH  Google Scholar 

  11. Goulart, F.C., da Costa, B.F.P.: Nested distance for stagewise-independent processes, unpublished (2017). https://arxiv.org/pdf/1711.10633.pdf

  12. Jouini E, Schachermayer W, Touzi N (2006) Law invariant risk measures have the Fatou property. In S. Kusuoka, A. Yamazaki(ed) Advances in Mathematical Economics, volume 9 of Kusuoka, Shigeo and Yamazaki, Akira chapter 4, pp 49–71. Springer, Japan. https://doi.org/10.1007/4-431-34342-3

  13. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (2002). https://doi.org/10.1007/b98838

    Book  MATH  Google Scholar 

  14. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Stochastic Modelling and Applied Probability. Springer, Berlin (1998). https://doi.org/10.1007/b98840

    Book  MATH  Google Scholar 

  15. Kusuoka, S.: On law invariant coherent risk measures. In: Kusuoka, S., Maruyama, T. (eds.) Advances in Mathematical Economics. Springer, Tokyo (2001). https://doi.org/10.1007/978-4-431-67891-5

    Chapter  MATH  Google Scholar 

  16. Maggioni, F., Allevi, E., Bertocchi, M.: Measures of information in multistage stochastic programming. STOPROG (2012). https://doi.org/10.5200/stoprog.2012.14

    Article  MATH  Google Scholar 

  17. McCann, R.J.: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11(3), 589–608 (2001). https://doi.org/10.1007/PL00001679

    Article  MathSciNet  MATH  Google Scholar 

  18. Peng, S.: Nonlinear expectations, nonlinear evaluations and risk measures. In: Lecture Notes in Mathematics, pp. 165–253. Springer, Berlin Heidelberg, (2004). https://doi.org/10.1007/b100122

  19. Pflug, GCh.: Version-independence and nested distributions in multistage stochastic optimization. SIAM J. Optim. 20, 1406–1420 (2009). https://doi.org/10.1137/080718401

    Article  MathSciNet  MATH  Google Scholar 

  20. Pflug, G. Ch., Pichler, A.: Multistage Stochastic Optimization. Springer Series in Operations Research and Financial Engineering. Springer, Berlin (2014). ISBN 978-3-319-08842-6. https://doi.org/10.1007/978-3-319-08843-3. https://books.google.com/books?id=q_VWBQAAQBAJ

  21. Pflug, GCh., Römisch, W.: Modeling, Measuring and Managing Risk. World Scientific, NJ (2007). https://doi.org/10.1142/9789812708724

    Book  MATH  Google Scholar 

  22. Philpott, A.B., de Matos, V.L.: Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion. Eur. J. Oper. Res. 218(2), 470–483 (2012). https://doi.org/10.1016/j.ejor.2011.10.056

    Article  MathSciNet  MATH  Google Scholar 

  23. Philpott, A.B., de Matos, V.L., Finardi, E.: On solving multistage stochastic programs with coherent risk measures. Oper. Res. 61(4), 957–970 (2013). https://doi.org/10.1287/opre.2013.1175

    Article  MathSciNet  MATH  Google Scholar 

  24. Pichler, A.: The natural Banach space for version independent risk measures. Insur. Math. Econ. 53(2), 405–415 (2003). https://doi.org/10.1016/j.insmatheco.2013.07.005

    Article  MathSciNet  MATH  Google Scholar 

  25. Pichler, A., Shapiro, A.: Minimal representations of insurance prices. Insur. Math. Econ. 62, 184–193 (2015). https://doi.org/10.1016/j.insmatheco.2015.03.011

    Article  MathSciNet  MATH  Google Scholar 

  26. Pichler, A., Shapiro, A.: Risk averse stochastic programming: time consistency and optimal stopping (2018). arXiv:1808.10807

  27. Riedel, F.: Dynamic coherent risk measures. Stoch. Process. Appl. 112(2), 185–200 (2004). https://doi.org/10.1016/j.spa.2004.03.004

    Article  MathSciNet  MATH  Google Scholar 

  28. Rockafellar, R.T., Wets, R.J.-B.: Nonanticipativity and \({L}^1\)-martingales in stochastic optimization problems. Math. Program. Study 6, 170–187 (1976)

    Article  Google Scholar 

  29. Römisch, W., Guigues, V.: Sampling-based decomposition methods for multistage stochastic programs based on extended polyhedral risk measures. SIAM J. Optim. 22(2), 286–312 (2012). https://doi.org/10.1137/100811696

    Article  MathSciNet  MATH  Google Scholar 

  30. Ruszczyński, A.: Risk-averse dynamic programming for Markov decision processes. Math. Program. Ser. B 125, 235–261 (2010). https://doi.org/10.1007/s10107-010-0393-3

    Article  MathSciNet  MATH  Google Scholar 

  31. Ruszczyński, A., Shapiro, A.: Conditional risk mappings. Math. Oper. Res. 31(3), 544–561 (2006). https://doi.org/10.1287/moor.1060.0204

    Article  MathSciNet  MATH  Google Scholar 

  32. Shapiro, A.: On Kusuoka representation of law invariant risk measures. Math. Oper. Res. 38(1), 142–152 (2013). https://doi.org/10.1287/moor.1120.0563

    Article  MathSciNet  MATH  Google Scholar 

  33. Shapiro, A.: Rectangular sets of probability measures. Oper. Res. 64(2), 528–541 (2016). https://doi.org/10.1287/opre.2015.1466

    Article  MathSciNet  MATH  Google Scholar 

  34. Shapiro, A.: Interchangeability principle and dynamic equations in risk averse stochastic programming. Oper. Res. Lett. 45(4), 377–381 (2017). https://doi.org/10.1016/j.orl.2017.05.008

    Article  MathSciNet  MATH  Google Scholar 

  35. Shapiro, A., Dentcheva, D., Ruszczyński, A.: In: Lectures on Stochastic Programming. MOS-SIAM Series on Optimization. SIAM, second edition (2014). https://doi.org/10.1137/1.9780898718751

  36. Shiryaev, A.N.: Probability. Springer, New York (1996). https://doi.org/10.1007/978-1-4757-2539-1

    Book  MATH  Google Scholar 

  37. Villani, C.: Topics in Optimal Transportation, vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2003). ISBN 0-821-83312-X. https://doi.org/10.1090/gsm/058. http://books.google.com/books?id=GqRXYFxe0l0C

  38. Xin, L., Shapiro, A.: Bounds for nested law invariant coherent risk measures. Oper. Res. Lett. 40, 431–435 (2012). https://doi.org/10.1016/j.orl.2012.09.002

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, J.: Backward Stochastic Differential Equations. Springer, New York (2017). https://doi.org/10.1007/978-1-4939-7256-2

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Shapiro for proposing to elaborate the continuity relations of nested risk measures with respect to the nested distance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alois Pichler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue Math. Prog. on “The interface between optimization and probability”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichler, A., Schlotter, R. Martingale characterizations of risk-averse stochastic optimization problems. Math. Program. 181, 377–403 (2020). https://doi.org/10.1007/s10107-019-01391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-019-01391-2

Keywords

Mathematics Subject Classification

Navigation