Skip to main content

Stochastic Decision Problems with Multiple Risk-Averse Agents

  • Conference paper
  • First Online:
Modeling and Optimization: Theory and Applications (MOPTA 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 213))

Included in the following conference series:

  • 577 Accesses

Abstract

We consider a stochastic decision problem, with dynamic risk measures, in which multiple risk-averse agents make their decisions to minimize their individual accumulated risk-costs over a finite-time horizon. Specifically, we introduce multi-structure dynamic risk measures induced from conditional g-expectations, where the latter are associated with the generator functionals of certain BSDEs that implicitly take into account the risk-cost functionals of the risk-averse agents. Here, we also assume that the solutions for such BSDEs almost surely satisfy a stochastic viability property w.r.t. a certain given closed convex set. Using a result similar to that of the Arrow–Barankin–Blackwell theorem, we establish the existence of consistent optimal decisions for the risk-averse agents, when the set of all Pareto optimal solutions, in the sense of viscosity solutions, for the associated dynamic programming equations is dense in the given closed convex set. Finally, we comment on the characteristics of acceptable risks w.r.t. some uncertain future outcomes or costs, where results from the dynamic risk analysis are part of the information used in the risk-averse decision criteria.

A preliminary version of this paper was presented at the Modeling and Optimization: Theory and Applications Conference, August 17–19, 2016, Bethlehem, PA, USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, we use the notation u ¬j to emphasize the dependence on \(u_{\cdot }^{j} \in \mathcal{U}_{[t,T]}^{j}\), where \(\mathcal{U}_{[t,T]}^{j}\), for any t ∈ [0, T], denotes the sets of U j-valued \(\big\{\mathcal{F}_{s}^{t}\big\}_{s\geq t}\)-adapted processes (see Definition 2).

  2. 2.

    Here, we remark that, for any t ∈ [0, T], the conditional g-expectation (denoted by \(\mathcal{E}_{g}\big[\xi \vert \mathcal{F}_{t}\big]\)) is also defined by

    $$\displaystyle{ \mathcal{E}_{g}\big[\xi \vert \mathcal{F}_{t}\big] \triangleq Y _{t}^{T,g,\xi }. }$$
  3. 3.

    In the paper, we assume that the set on the right-hand side of (30) is nonempty.

  4. 4.

    Notice that \(\varphi \big(t,x\big) \in C_{b}^{1,2}([0,T] \times \mathbb{R}^{d}; \mathbb{R}^{n}).\)

References

  1. Alexandrov, A.D.: The existence almost everywhere of the second differential of a convex function and some associated properties of convex surfaces. Ucenye Zapiski Leningrad. Gos. Univ. Ser. Math. 37, 3–35 (1939, in Russian)

    Google Scholar 

  2. Antonelli, F.: Backward-forward stochastic differential equation. Ann. Appl. Probab. 3, 777–793 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arrow, K.J., Barankin, E.W., Blackwell, D.: Admissible points of convex sets. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, vol. II, pp. 87–91. Princeton, NJ (1953)

    Google Scholar 

  4. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Befekadu, G.K., Veremyev, A., Pasiliao, E.L.: On the hierarchical risk-averse control problems for diffusion processes. Preprint arXiv:1603.03359 [math.OC], 20 pages, March 2016

  6. Buckdahn, R., Quincampoix, M., Rascanu, A.: Viability property for a backward stochastic differential equation and applications to partial differential equations. Probab. Theory Relat. Fields 116, 485–504 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coquet, F. Hu, Y., Mémin, J., Peng, S.: Filtration-consistent nonlinear expectations and related g-expectations. Probab. Theory Relat. Fields 123, 1–27 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Detlefsen, K., Scandolo, G.: Conditional and dynamic convex risk measures. Finance Stochast. 9, 539–561 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. El-Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7, 1–71 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (2006)

    MATH  Google Scholar 

  12. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stochast. 6, 429–447 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, Y., Peng, S.: Solutions of forward-backward stochastic differential equations. Probab. Theory Relat. Fields 103, 273–283 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Krylov, N.V.: Controlled Diffusion Process. Springer, Berlin (2008)

    Google Scholar 

  15. Li, J., Wei, Q.: Optimal control problems of fully coupled FBSDEs and viscosity solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 52, 1622–1662 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pardoux, E., Peng, S.: Adapted solutions of backward stochastic differential equation. Syst. Control Lett. 14, 55–61 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pardoux, E., Tang, S.J.: Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Relat. Fields 114, 123–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peng, S.: Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 37, 61–67 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peng, S.: A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation. Stoch. Stoch. Rep. 38, 119–134 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peng, S.: Nonlinear Expectations, Nonlinear Evaluations and Risk Measures. Lecture Notes in Mathematics. Springer, Berlin (2004)

    MATH  Google Scholar 

  21. Protter, P.: Stochastic Integration and Stochastic Differential Equations: A New Approach. Springer, Berlin, Germany (1990)

    Book  MATH  Google Scholar 

  22. Rosazza Gianin, E.: Risk measures via g-expectations. Insur. Math. Econ. 39, 19–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ruszczyński, A.: Risk-averse dynamic programming for Markov decision process. Math. Program. 125, 235–261 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stadje, M.: Extending dynamic convex risk measures from discrete time to continuous time: a convergence approach. Insur. Math. Econ. 47, 391–404 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Air Force Research Laboratory (AFRL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Getachew K. Befekadu .

Editor information

Editors and Affiliations

Appendix: Proofs

Appendix: Proofs

In this section, we give the proofs for the main results.

Proof of Proposition 1

Notice that m and σ are bounded and Lipschitz continuous w.r.t. \((t,x) \in [0,T] \times \mathbb{R}^{d}\) and uniformly for \(u \in \prod \nolimits _{i=1}^{n}U^{i}\). Then, for any \((t,x) \in [0,T] \times \mathbb{R}^{d}\) and u ⋅  ¬j, for j = 1, 2, , n, are progressively measurable processes, there always exists a unique path-wise solution \(X_{\cdot }^{t,x;u_{\cdot }^{\neg j} } \in \mathcal{S}^{2}\big(t,T; \mathbb{R}^{d}\big)\) for the forward SDE in (9). On the other hand, consider the following BSDEs,

$$\displaystyle\begin{array}{rcl} -d\hat{Y }_{s}^{j,t,x;u_{\cdot }^{\neg j} } = g_{j}\big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} },\hat{Y }_{s}^{j,t,x;u_{\cdot }^{\neg j} },Z_{s}^{j,t,x;u_{\cdot }^{\neg j} }\big)ds - Z_{s}^{j,t,x;u_{\cdot }^{\neg j} }dB_{s},& & \\ j = 1,2,\ldots,n,& &{}\end{array}$$
(43)

where

$$\displaystyle{ \hat{Y }_{T}^{j;t,x;u_{\cdot }^{\neg j} } =\int _{ t}^{T}c_{ j}\big(\tau,X_{\tau }^{t,x;u_{\cdot }^{\neg j} },u_{\tau }^{j}\big)d\tau +\varPsi _{ j}(X_{T}^{t,x;u_{\cdot }^{\neg j} }). }$$

From Lemma 2, Eq. (43) admits unique solutions \(\big(\bar{Y }_{\cdot }^{j,t,x;u_{\cdot }^{\neg j} },Z_{\cdot }^{j,t,x;u_{\cdot }^{\neg j} }\big)\), for j = 1, 2, , n, in \(\mathcal{S}^{2}\big(t,T; \mathbb{R}\big) \times \mathcal{H}^{2}\big(t,T; \mathbb{R}^{d}\big)\). Furthermore, if we introduce the following

$$\displaystyle{ Y _{s}^{j,t,x;u_{\cdot }^{\neg j} } =\hat{ Y }_{s}^{j,t,x;u_{\cdot }^{\neg j} } -\int _{t}^{s}c_{ j}\big(\tau,X_{\tau }^{t,x;u_{\cdot }^{\neg j} },u_{\tau }^{j}\big)d\tau,\quad s \in [t,T]. }$$

Then, the family of forward of the BSDEs in (14) holds with \(\big(Y _{\cdot }^{j,t,x;u_{\cdot }^{\neg j} },Z_{\cdot }^{j,t,x;u_{\cdot }^{\neg j} }\big)\), for j = 1, 2, , n. Moreover, we also observe that \(Y _{t}^{j,t,x;u_{\cdot }^{\neg j} }\), for j = 1, 2, , n, are deterministic. This completes the proof of Proposition 1. □

Proof of Proposition 2

For any r ∈ [t, T], with t ∈ [0, T], we consider the following probability space \(\big(\varOmega,\mathcal{F}, \mathbb{P}\big(\cdot \vert \mathcal{F}_{r}^{t}\big),\{\mathcal{F}^{t}\}\big)\) and notice that η is deterministic under this probability space. Then, for any sr, there exist progressively measurable process ψ such that

$$\displaystyle\begin{array}{rcl} u_{s}^{j}(\varOmega )& =& \psi (\varOmega,B_{ \cdot \wedge s}(\varOmega )), \\ & =& \psi (s,\bar{B}_{\cdot \wedge s}(\varOmega ) + B_{r}(\varOmega )),{}\end{array}$$
(44)

where \(\bar{B}_{s} = B_{s} - B_{r}\) is a standard d-dimensional Brownian motion. Note that n tuple u ⋅  ¬j, for j = 1, 2, , n, are \(\mathcal{F}_{r}^{t}\)-adapted processes, then we have the following restriction w.r.t. Σ [t, T]

$$\displaystyle{ \big(\varOmega,\mathcal{F},\{\mathcal{F}^{t}\}, \mathbb{P}\big(\cdot \vert \mathcal{F}_{ r}^{t}\big)(\omega '),B_{ \cdot },u_{\cdot }^{\neg j}\big) \in \varSigma _{ [t,T]},\quad j = 1,2,\ldots,n, }$$
(45)

where ω′ ∈ Ω′ such that \(\varOmega ' \in \mathcal{F}\), with \(\mathbb{P}(\varOmega ') = 1\). Furthermore, noting Lemma 2, if we work under the probability space \(\big(\varOmega ',\mathcal{F}, \mathbb{P}\big(\cdot \vert \mathcal{F}_{r}^{t}\big)\big)\), then the statement in (34) holds \(\mathbb{P}\)- almost surely. This completes the proof of Proposition 2. □

Proof of Proposition 4

Suppose there exists an n-tuple of optimal risk-averse decisions \((\hat{u}_{\cdot }^{1},\hat{u}_{\cdot }^{2},\ldots,\hat{u}_{\cdot }^{n}) \in \prod \nolimits _{i=1}^{n}\mathcal{U}_{[0,T]}^{i}\) satisfying the statements in Definition 3. Assume that \((t,x) \in [0,T] \times \mathbb{R}^{d}\) is fixed. For any \(u_{\cdot }^{j} \in \mathcal{U}_{[t,T]}^{j}\), restricted to Σ [t, T], for j ∈ {1, 2, , n}, we consider an \(\mathbb{R}^{n}\)-valued process \(\varphi \big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} }\big)\), with

$$\displaystyle{ u_{\cdot }^{\neg j} = (\begin{array}{ccccccc} \hat{u}_{ \cdot }^{1},&\ldots,&\hat{u}_{ \cdot }^{j-1},&u_{ \cdot }^{j},&\hat{u}_{ \cdot }^{j+1},&\cdots \,,&\hat{u}_{ \cdot }^{n} \end{array} ) \in \prod \nolimits _{i=1}^{n}\mathcal{U}_{ [t,T]}^{i}, }$$

which is restricted to Σ [t, T]. Then, using Itô integral formula, we can evaluate the difference between \(\varphi _{j}\big(T,X_{T}^{t,x;u_{\cdot }^{\neg j} }\big)\) and \(\varphi _{j}\big(t,x\big)\), for j = 1, 2, , n, as follows:Footnote 4

$$\displaystyle\begin{array}{rcl} & & \varphi _{j}\big(T,X_{T}^{t,x;u_{\cdot }^{\neg j} }\big) -\varphi _{j}\big(t,x\big) =\int _{ t}^{T}\Big[ \dfrac{\partial } {\partial t}\varphi _{j}\big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} }\big) + \mathcal{L}_{t}^{u^{\neg j} }\varphi _{j}\big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} }\big)\Big]ds \\ & & \phantom{\varphi _{j}\big(T,X_{T}^{t,x;u_{\cdot }^{\neg j} }\big) -}\quad +\int _{ t}^{T}D_{ x}\varphi _{j}\big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} }\big) \cdot \sigma (s,X_{s}^{t,x;u_{\cdot }^{\neg j} },u_{s}^{\neg j})dB_{ s}. {}\end{array}$$
(46)

Using (20), we further obtain the following

$$\displaystyle\begin{array}{rcl} & & \dfrac{\partial } {\partial t}\varphi _{j}\big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} }\big) + \mathcal{L}_{t}^{u^{\neg j} }\varphi _{j}\big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} }\big) \\ & & \quad + g_{j}\big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} },\varphi \big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} }\big),D_{x}\varphi _{j}\big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} }\big) \cdot \sigma (s,X_{s}^{t,x;u_{\cdot }^{\neg j} },u_{s}^{\neg j})\big) \geq 0, \\ & & \quad \quad \quad \quad \quad j = 1,2,\ldots,n. {}\end{array}$$
(47)

Furthermore, if we combine (46) and (47), then we obtain

$$\displaystyle\begin{array}{rcl} & & \varphi _{j}\big(t,x\big) \leq \varPsi _{j}\big(X_{T}^{t,x;u_{\cdot }^{\neg j} }\big) \\ & & \quad \quad +\int _{ t}^{T}g_{ j}\big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} },\varphi (s,X_{s}^{t,x;u_{\cdot }^{\neg j} }),D_{x}\varphi _{j}(s,X_{s}^{t,x;u_{\cdot }^{\neg j} }) \cdot \sigma (s,X_{s}^{t,x;u_{\cdot }^{\neg j} },u_{s}^{\neg j})\big)ds \\ & & \quad \quad \quad -\int _{t}^{T}D_{ x}\varphi _{j}(s,X_{s}^{t,x;u_{\cdot }^{\neg j} }) \cdot \sigma (s,X_{s}^{t,x;u_{\cdot }^{\neg j} },u_{s}^{\neg j})dB_{ s}. {}\end{array}$$
(48)

Define \(Z_{s}^{j,t,x;u_{\cdot }^{\neg j} } = D_{x}\varphi _{j}(s,X_{s}^{t,x;u_{\cdot }^{\neg j} }) \cdot \sigma (s,X_{s}^{t,x;u_{\cdot }^{\neg j} },(\hat{u}_{s},v_{s}))\), for s ∈ [t, T] and for j = 1, 2, , n, then \(\varphi _{j}\big(t,x\big) \leq Y _{t}^{j,t,x;u_{\cdot }^{\neg j} }\) follows, where \((Y _{\cdot }^{j,t,x;u_{\cdot }^{\neg j} },Z_{\cdot }^{j,t,x;u_{\cdot }^{\neg j} })\) is a solution to BSDE in (14) (cf. Eq. (13)). As a result of this, we have

$$\displaystyle{ \varphi _{j}\big(t,x\big) \leq V _{j}^{u^{j} }\big(t,x\big),\quad j = 1,2,\ldots,n. }$$

Moreover, if there exists at least one \(\hat{u}^{j}\) satisfying (40), i.e., if \(\hat{u}^{j}\) is a measurable selector of

$$\displaystyle\begin{array}{rcl} & & \mathop{\mathrm{arg\,max}}\limits \Big\{\mathcal{L}_{s}^{u^{\neg j} }\varphi _{j}\big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} }\big) {}\\ & & \quad \quad + g_{j}\big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} },\varphi \big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} }\big),D_{x}\varphi _{j}\big(s,X_{s}^{t,x;u_{\cdot }^{\neg j} }\big) \cdot \sigma \big (s,X_{s}^{t,x;w},u_{ s}^{\neg j}\big)\big)\Big\}, {}\\ & & \quad \quad \quad \quad \quad \quad j \in \{ 1,2,\ldots,n\}. {}\\ \end{array}$$

Then, for \(u_{\cdot }^{j} =\hat{ u}_{\cdot }^{j}\), for j ∈ {1, 2, , n}, the inequality in (48) becomes an equality, i.e.,

$$\displaystyle\begin{array}{rcl} \varphi _{j}(t,x)& =& V _{j}^{\hat{u}^{j} }\big(t,x\big) {}\\ & & \triangleq Y _{T}^{j,t,x;\hat{u}_{\cdot }^{\neg j} },\,\,j \in \{ 1,2,\ldots,n\},\,\,\text{(cf. Eqs. (11) and (13))}. {}\\ \end{array}$$

Note that the corresponding path-wise solution \(X_{s}^{t,x;\hat{u}_{\cdot }}\) is progressively measurable, since \(\hat{u}_{\cdot }\in \prod \nolimits _{i=1}^{n}\mathcal{U}_{[0,T]}^{i}\) is also restricted to Σ [t, T].

On the other hand, noting the relations in (11) and (13), for any \((t,x) \in [0,T] \times \mathbb{R}^{n}\), with restriction to Σ [t, T], define the following utility function over the closed convex set K

$$\displaystyle\begin{array}{rcl} K \ni \big (\begin{array}{cccc} \rho _{t,T}^{g_{1}}\big[\xi _{ t,T}^{1}\big(u^{\neg 1}\big)\big],&\rho _{ t,T}^{g_{2}}\big[\xi _{ t,T}^{2}\big(u^{\neg 2}\big)\big],&\cdots \,,&\rho _{ t,T}^{g_{n}}\big[\xi _{ t,T}^{n}\big(u^{\neg n}\big)\big] \end{array} \big)& & {}\\ \quad \quad \rightarrow \mathcal{J} (u) =\sum \nolimits _{ i=1}^{n}\pi ^{i}\rho _{ t,T}^{g_{i} }\big[\xi _{t,T}^{i}\big(u^{\neg i}\big)\big],& & {}\\ \end{array}$$

where π i > 0, for i = 1, 2, , n.

Note that the utility function \(\mathcal{J} (u) =\sum \nolimits _{ i}^{n}\pi ^{i}\rho _{t,T}^{g_{i}}\big[\xi _{t,T}^{i}\big(u^{\neg i}\big)\big]\) satisfies the following property

$$\displaystyle{ \sum \nolimits _{i=1}^{n}\pi ^{i}\rho _{ t,T}^{g_{i} }\big[\xi _{t,T}^{i}\big(\tilde{u}^{\neg i}\big)\big] <\sum \nolimits _{ i=1}^{n}\pi ^{i}\rho _{ t,T}^{g_{i} }\big[\xi _{t,T}^{i}\big(u^{\neg i}\big)\big], }$$

i.e., \(\mathcal{J} (\tilde{u}) <\mathcal{J} (u)\), whenever

$$\displaystyle\begin{array}{rcl} & & \big(\begin{array}{cccc} \rho _{t,T}^{g_{1}}\big[\xi _{ t,T}^{1}\big(\tilde{u}^{\neg 1}\big)\big],&\rho _{ t,T}^{g_{2}}\big[\xi _{ t,T}^{2}\big(\tilde{u}^{\neg 2}\big)\big],&\cdots \,,&\rho _{ t,T}^{g_{n}}\big[\xi _{ t,T}^{n}\big(\tilde{u}^{\neg n}\big)\big] \end{array} \big) {}\\ & & \quad \quad \quad \prec \big (\begin{array}{cccc} \rho _{t,T}^{g_{1}}\big[\xi _{ t,T}^{1}\big(u^{\neg 1}\big)\big],&\rho _{ t,T}^{g_{2}}\big[\xi _{ t,T}^{2}\big(u^{\neg 2}\big)\big],&\cdots \,,&\rho _{ t,T}^{g_{n}}\big[\xi _{ t,T}^{n}\big(u^{\neg n}\big)\big] \end{array} \big),{}\\ \end{array}$$

w.r.t. the class of admissible control processes \(\prod \nolimits _{i=1}^{n}\mathcal{U}_{[t,T]}^{i}\) (cf. Eqs. (36)– (39)). Then, from the Arrow–Barankin–Blackwell theorem (e.g., see [3]), for all t ∈ [0, T], one can see that the set in

$$\displaystyle\begin{array}{rcl} & & \Bigg\{\big(\begin{array}{cccc} \rho _{t,T}^{g_{1}}\big[\xi _{ t,T}^{1}\big(u^{\neg 1}\big)\big],&\rho _{ t,T}^{g_{2}}\big[\xi _{ t,T}^{2}\big(u^{\neg 2}\big)\big],&\cdots \,,&\rho _{ t,T}^{g_{n}}\big[\xi _{ t,T}^{n}\big(u^{\neg n}\big)\big] \end{array} \big) \in K\,\Big\vert \, {}\\ & & \,\,\exists \,\pi ^{i}> 0,\,\,i = 1,2,\ldots,n,\,\,\min \sum \nolimits _{ i=1}^{n}\pi ^{i}\rho _{ t,T}^{g_{i} }\big[\xi _{t,T}^{i}\big(u^{\neg i}\big)\big] =\sum \nolimits _{ i=1}^{n}\pi ^{i}\rho _{ t,T}^{g_{i} }\big[\xi _{t,T}^{i}\big(\hat{u}^{\neg i}\big)\big]\Bigg\} {}\\ \end{array}$$

is dense in the set of all Pareto equilibria. This further implies that, for any choice of π i > 0, i = 1, 2, , n, the minimizer \(\mathcal{J} (\hat{u}) =\sum \nolimits _{ i}^{n}\pi ^{i}\rho _{0,T}^{g_{i}}\big[\xi _{0,T}^{i}\big(\hat{u}^{\neg i}\big)\big]\) over K satisfies the Pareto equilibrium condition w.r.t. some n-tuple of optimal risk-averse decisions \((\hat{u}_{\cdot }^{1},\hat{u}_{\cdot }^{2},\ldots,\hat{u}_{\cdot }^{n}) \in \prod \nolimits _{i=1}^{n}\mathcal{U}_{[0,T]}^{i}\). This completes the proof of Proposition 4. □

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Befekadu, G.K., Veremyev, A., Boginski, V., Pasiliao, E.L. (2017). Stochastic Decision Problems with Multiple Risk-Averse Agents. In: Takáč, M., Terlaky, T. (eds) Modeling and Optimization: Theory and Applications. MOPTA 2016. Springer Proceedings in Mathematics & Statistics, vol 213. Springer, Cham. https://doi.org/10.1007/978-3-319-66616-7_1

Download citation

Publish with us

Policies and ethics