Skip to main content
Log in

On the time transformation of mixed integer optimal control problems using a consistent fixed integer control function

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Nonlinear control systems with instantly changing dynamical behavior can be modeled by introducing an additional control function that is integer valued in contrast to a control function that is allowed to have continuous values. The discretization of a mixed integer optimal control problem (MIOCP) leads to a non differentiable optimization problem and the non differentiability is caused by the integer values. The paper is about a time transformation method that is used to transform a MIOCP with integer dependent constraints into an ordinary optimal control problem. Differentiability is achieved by replacing a variable integer control function with a fixed integer control function and a variable time allows to change the sequence of active integer values. In contrast to other contributions, so called control consistent fixed integer control functions are taken into account here. It is shown that these control consistent fixed integer control functions allow a better accuracy in the resulting trajectories, in particular in the computed switching times. The method is verified on analytical and numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Achtziger, W., Hoheisel, T., Kanzow, C.: A smoothing-regularization approach to mathematical programs with vanishing constraints. Comput. Optim. Appl. 55(3), 733–767 (2013). doi:10.1007/s10589-013-9539-6

    Article  MATH  MathSciNet  Google Scholar 

  2. Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. 114(1), 69–99 (2008). doi:10.1007/s10107-006-0083-3

    Article  MATH  MathSciNet  Google Scholar 

  3. Baumrucker, B., Renfro, J., Biegler, L.: MPEC problem formulations and solution strategies with chemical engineering applications. Comput. Chem. Eng. 32(12), 2903–2913 (2008). doi:10.1016/j.compchemeng.2008.02.010

    Article  Google Scholar 

  4. Bengea, S.C., Decarlo, R.A.: Optimal control of switching systems. Automatica 41(1), 11–27 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Binder, T., Blank, L., Bock, H., Bulirsch, R., Dahmen, W., Diehl, M., Kronseder, T., Marquardt, W., Schlder, J., von Stryk, O.: Introduction to model based optimization of chemical processes on moving horizons. In: Grötschel, M., Krumke, S.O., Rambau, J. (eds.) Online Optimization of Large Scale Systems, pp. 295–339. Springer, Berlin (2001)

    Chapter  Google Scholar 

  6. Burgschweiger, J., Gnädig, B., Steinbach, M.C.: Optimization models for operative planning in drinking water networks. Optim. Eng. 10(1), 43–73 (2009). doi:10.1007/s11081-008-9040-8

    Article  MATH  MathSciNet  Google Scholar 

  7. Buss, M., Glocker, M., Hardt, M., von Stryk, O., Bulirsch, R., Schmidt, G.: Nonlinear hybrid dynamical systems: modeling, optimal control, and applications. In: Engell, S., Frehse, G., Schnieder, E. (eds.) Modelling, Analysis, and Design of Hybrid Systems, Lecture Notes in Control and Information Sciences, vol. 279, pp. 311–335. Springer, Berlin (2002). doi:10.1007/3-540-45426-8_18

  8. Buss, M., Hardt, M., von Stryk, O.: Numerical solution of hybrid optimal control problems with applications in robotics. In: Proceedings of 15th IFAC World Congress on Automatic Control, Barcelona, Spain, July, pp. 21–26 (2002)

  9. Caldwell, T.M., Murphey, T.D.: Switching mode generation and optimal estimation with application to skid-steering. Automatica 47(1), 50–64 (2011). doi:10.1016/j.automatica.2010.10.010

    Article  MATH  MathSciNet  Google Scholar 

  10. Campos, C.M., Ober-Blöbaum, S., Trélat, E.: High order variational integrators in the optimal control of mechanical systems. Discret. Contin. Dyn. Syst. A 35(9), 4193–4223 (2015). doi:10.3934/dcds.2015.35.4193

    Article  MATH  MathSciNet  Google Scholar 

  11. Dubovitskii, A., Milyutin, A.: Extremum problems in the presence of restrictions. USSR Computational Mathematics and Mathematical Physics 5(3), 1–80 (1965). doi:10.1016/0041-5553(65)90148-5

    Article  MATH  Google Scholar 

  12. Flaßkamp, K., Murphey, T., Ober-Blöbaum, S.: Switching time optimization in discretized hybrid dynamical systems. In: 51st IEEE International Conference on Decision and Control, pp. 707–712. Maui, HI, USA (2012)

  13. Flaßkamp, K., Murphey, T., Ober-Blöbaum, S.: Discretized switching time optimization problems. In: European Control Conference, pp. 3179–3184. Zurich, Switzerland (2013)

  14. Flaßkamp, K., Ober-Blöbaum, S.: Variational formulation and optimal control of hybrid Lagrangian systems. In: Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control, pp. 241–250 (2011)

  15. Geiger, C., Kanzow, C.: Theorie und Numerik restringierter Optimierungsaufgaben, vol. 135. Springer, Berlin (2002)

    Book  Google Scholar 

  16. Gerdts, M.: Solving mixed-integer optimal control problems by branch&bound: a case study from automobile test-driving with gear shift. Optim. Control Appl. Methods 26(1), 1–18 (2005). doi:10.1002/oca.751

    Article  MathSciNet  Google Scholar 

  17. Gerdts, M.: A variable time transformation method for mixed-integer optimal control problems. Optim. Control Appl. Methods 27(3), 169–182 (2006). doi:10.1002/oca.778

    Article  MathSciNet  Google Scholar 

  18. Gerdts, M.: Optimal Control of ODEs and DAEs. De Gruyter, Berlin (2012)

    Book  MATH  Google Scholar 

  19. Gerdts, M., Sager, S.: Mixed-Integer DAE Optimal Control Problems: Necessary conditions and bounds. In: Biegler, L., Campbell, S., Mehrmann, V. (eds.) Control and Optimization with Differential-Algebraic Constraints, pp. 189–212. SIAM, Philadelphia (2012)

    Chapter  Google Scholar 

  20. Glocker, M., von Stryk, O.: Hybrid optimal control of motorized traveling salesmen and beyond. In: Proceedings of 15th IFAC World Congress on Automatic Control, pp. 21–26 (2002)

  21. Gonzalez, H., Vasudevan, R., Kamgarpour, M., Sastry, S.S., Bajcsy, R., Tomlin, C.J.: A descent algorithm for the optimal control of constrained nonlinear switched dynamical systems. In: Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, HSCC ’10, pp. 51–60. ACM, New York, NY, USA (2010). doi:10.1145/1755952.1755961

  22. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, vol. 31. Springer, Berlin (2006)

    MATH  Google Scholar 

  23. Izmailov, A., Solodov, M.: Mathematical programs with vanishing constraints: optimality conditions, sensitivity, and a relaxation method. J. Optim. Theory Appl. 142(3), 501–532 (2009). doi:10.1007/s10957-009-9517-4

    Article  MATH  MathSciNet  Google Scholar 

  24. Jung, M.: Relaxations and Approximations for Mixed-Integer Optimal Control. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg (2014)

  25. Kaya, C.Y., Noakes, J.L.: Computational method for time-optimal switching control. J. Optim. Theory Appl. 117(1), 69–92 (2003). doi:10.1023/A:1023600422807

    Article  MATH  MathSciNet  Google Scholar 

  26. Kirches, C., Sager, S., Bock, H., Schlöder, J.: Time-optimal control of automobile test drives with gear shifts. Optim. Control Appl. Methods 31(2), 137–153 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Koch, M.W., Leyendecker, S.: Structure preserving simulation of monopedal jumping. Arch. Mech. Eng. 60(1), 127–146 (2013). doi:10.2478/meceng-2013-0008

    Google Scholar 

  28. Lee, H., Teo, K., Rehbock, V., Jennings, L.: Control parametrization enhancing technique for optimal discrete-valued control problems. Automatica 35(8), 1401–1407 (1999). doi:10.1016/S0005-1098(99)00050-3

    Article  MATH  MathSciNet  Google Scholar 

  29. Lee, H., Teo, K.L.: Control parametrization enhancing technique for solving a special ode class with state dependent switch. J. Optim. Theory Appl. 118(1), 55–66 (2003). doi:10.1023/A:1024735407694

    Article  MATH  MathSciNet  Google Scholar 

  30. Leyendecker, S., Ober-Blöbaum, S., Marsden, J.E., Ortiz, M.: Discrete mechanics and optimal control for constrained systems. Optim. Control Appl. Methods 31(6), 505–528 (2010). doi:10.1002/oca.912

  31. Leyffer, S., López-Calva, G., Nocedal, J.: Interior methods for mathematical programs with complementarity constraints. SIAM J. Optim. 17(1), 52–77 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numerica 13, 271–369 (2004). doi:10.1017/S0962492904000194. http://journals.cambridge.org/article_S0962492904000194

  33. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  34. Ober-Blöbaum, S., Junge, O., Marsden, J.E.: Discrete mechanics and optimal control: an analysis. Control Optim. Calc. Var. 17(2), 322–352 (2011). doi:10.1051/cocv/2010012

    Article  MATH  MathSciNet  Google Scholar 

  35. Ober-Blöbaum, S., Ringkamp, M., zum Felde, G.: Solving multiobjective optimal control problems in space mission design using discrete mechanics and reference point techniques. In: IEEE 51st Annual Conference on Decision and Control (CDC), 2012, pp. 5711–5716. IEEE (2012)

  36. Palagachev, K., Gerdts, M.: Mathematical programs with blocks of vanishing constraints arising in discretized mixed-integer optimal control problems. Set Valued Var. Anal. 23(1), 149–167 (2015). doi:10.1007/s11228-014-0297-0

    Article  MATH  MathSciNet  Google Scholar 

  37. Ringkamp, M., Ober-Blöbaum, S., Leyendecker, S.: Discrete mechanics and mixed integer optimal control of dynamical systems. PAMM 14(1), 919–920 (2014). doi:10.1002/pamm.201410440

    Article  Google Scholar 

  38. Sager, S.: Numerical Methods for Mixed-Integer Optimal Control Problems. Ph.D. thesis, Der Andere Verlag Tönning, Lübeck, Marburg (2005)

  39. Sager, S., Reinelt, G., Bock, H.: Direct methods with maximal lower bound for mixed-integer optimal control problems. Math. Program. 118(1), 109–149 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Till, J., Engell, S., Panek, S., Stursberg, O.: Applied hybrid system optimization: an empirical investigation of complexity. Control Eng. Pract. 12(10), 1291–1303 (2004). doi:10.1016/j.conengprac.2004.04.003. Analysis and Design of Hybrid Systems

    Article  Google Scholar 

  41. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006). doi:10.1007/s10107-004-0559-y

    Article  MATH  MathSciNet  Google Scholar 

  42. Walther, A., Griewank, A.: Getting started with ADOL-C. In: Naumann, U., Schenk, O. (eds.) Combinatorial Scientific Computing, pp. 181–202. CRC Press, Boca Raton (2012)

    Chapter  Google Scholar 

  43. Yunt, K., Glocker, C.: Modeling and optimal control of hybrid rigidbody mechanical systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol. 4416, pp. 614–627. Springer, Berlin (2007). doi:10.1007/978-3-540-71493-4_47

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Ringkamp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ringkamp, M., Ober-Blöbaum, S. & Leyendecker, S. On the time transformation of mixed integer optimal control problems using a consistent fixed integer control function. Math. Program. 161, 551–581 (2017). https://doi.org/10.1007/s10107-016-1023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1023-5

Keywords

Mathematics Subject Classification

Navigation