Skip to main content
Log in

Linear optimization with cones of moments and nonnegative polynomials

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Let \(\mathcal {A}\) be a finite subset of \(\mathbb {N}^n\) and \(\mathbb {R}[x]_{\mathcal {A}}\) be the space spanned by monomials \(x^\alpha \) with \(\alpha \in \mathcal {A}\). Let \(K\) be a compact semialgebraic set of \(\mathbb {R}^n\) such that a polynomial in \(\mathbb {R}[x]_{\mathcal {A}}\) is positive on \(K\). Denote by \(\fancyscript{P}_{\mathcal {A}}(K)\) the cone of polynomials in \(\mathbb {R}[x]_{\mathcal {A}}\) that are nonnegative on \(K\). The dual cone of \(\fancyscript{P}_{\mathcal {A}}(K)\) is \(\fancyscript{R}_{\mathcal {A}}(K)\), the set of all truncated moment sequences in \(\mathbb {R}^{\mathcal {A}}\) that admit representing measures supported in \(K\). First, we study geometric properties of the cones \(\fancyscript{P}_{\mathcal {A}}(K)\) and \(\fancyscript{R}_{\mathcal {A}}(K)\) (like interiors, closeness, duality, memberships), and construct a convergent hierarchy of semidefinite relaxations for each of them. Second, we propose a semidefinite algorithm for solving linear optimization problems with the cones \(\fancyscript{P}_{\mathcal {A}}(K)\) and \(\fancyscript{R}_{\mathcal {A}}(K)\), and prove its asymptotic and finite convergence. Third, we show how to check whether \(\fancyscript{P}_{\mathcal {A}}(K)\) and \(\fancyscript{R}_{\mathcal {A}}(K)\) intersect affine subspaces; if they do, we show how to get a point in the intersections; if they do not, we prove certificates for the empty intersection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [34], optimization problems with only inequalities were discussed. If there are equality constraints, Assumption 2.1 in [34] can be naturally modified to include all equalities, and the conclusion of Theorem 2.2 of [34] is still true, with the same proof.

  2. Throughout the paper, six decimal digits are shown for numerical results.

References

  1. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  2. Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  3. Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, Berlin (1990)

    MATH  Google Scholar 

  4. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Third edition. Undergraduate Texts in Mathematics. Springer, New York (1997)

    Google Scholar 

  5. Curto, R., Fialkow, L.: Solution of the truncated complex moment problem for flat data. Memoirs of the American Mathematical Society, 119(1996), No. 568. American Mathematical Society, Providence, RI (1996)

  6. Curto, R., Fialkow, L.: Flat extensions of positive moment matrices: recursively generated relations. Memoirs of the American Mathematical Society No. 648. AMS, Providence (1998)

  7. Curto, R., Fialkow, L.: Truncated K-moment problems in several variables. J. Oper. Theory 54, 189–226 (2005)

    MATH  MathSciNet  Google Scholar 

  8. Dür, M.: Copositive programming—a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.), Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer, Berlin (2010)

  9. Fialkow, L., Nie, J.: The truncated moment problem via homogenization and flat extensions. J. Funct. Anal. 263(6), 1682–1700 (2012)

  10. Gouveia, J., Parrilo, P., Thomas, R.: Theta bodies for polynomial ideals. SIAM J. Optim. 20(4), 2097–2118 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gouveia, J., Netzer, T.: Positive polynomials and projections of spectrahedra. SIAM J. Optim. 21(3), 960–976 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gouveia, J., Laurent, M., Parrilo, P., Thomas, R.: A new semidefinite programming relaxation for cycles in binary matroids and cuts in graphs. Math. Program. 112(1–2), 203–225 (2012)

    Article  MathSciNet  Google Scholar 

  13. Gouveia, J., Thomas, R.: Convex hulls of algebraic sets. In: Anjos, M., Lasserre, J. (eds.) Handbook of Semidefinite, Cone and Polynomial Optimization, International Series in Operations Research & Management Science, vol. 166, pp. 113–138. Springer, Berlin (2012)

  14. Helton, J.W., Nie, J.: Semidefinite representation of convex sets. Math. Program. Ser. A, 122(1), 21–64 (2010)

  15. Helton, J.W., Nie, J.: Sufficient and necessary conditions for semidefinite representability of convex hulls and sets. SIAM J. Optim. 20(2), 759–791 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Helton, J.W., Nie, J.: A semidefinite approach for truncated K-moment problems. Found. Comput. Math. 12(6), 851–881 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Henrion, D., Lasserre, J.: Detecting global optimality and extracting solutions in gloptiPoly. In: Positive Polynomials in Control, Lecture Notes in Control and Inform. Sci., vol. 312, pp. 293–310. Springer, Berlin (2005)

  18. Henrion, D., Lasserre, J., Loefberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009)

  19. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lasserre, J.B., Laurent, M., Rostalski, P.: Semidefinite characterization and computation of zero-dimensional real radical ideals. Found. Comput. Math. 8, 607–647 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lasserre, J.B., Laurent, M., Rostalski, P.: A prolongation-projection algorithm for computing the finite real variety of an ideal. Theor. Comput. Sci. 410(27–29), 2685–2700 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lasserre, J.B.: A semidefinite programming approach to the generalized problem of moments. Math. Program. 112, 65–92 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lasserre, J.B.: Convexity in semialgebraic geometry and polynomial optimization. SIAM J. Optim. 19(4), 1995–2014 (2008)

    Article  MathSciNet  Google Scholar 

  24. Lasserre, J.B.: Convex sets with semidefinite representation. Math. Program. Ser. A 120(2), 457–477 (2009)

  25. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    Book  Google Scholar 

  26. Laurent, M.: Revisiting two theorems of Curto and Fialkow on moment matrices. Proc. Am. Math. Soc. 133(10), 2965–2976 (2005)

  27. Laurent, M.: Semidefinite representations for finite varieties. Math. Program. 109, 1–26 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, vol. 149 of IMA Volumes in Mathematics and Its Applications, pp. 157–270. Springer, Berlin (2009)

  29. Laurent, M., Handbook, P.: The approach of moments for polynomial equations. In: Anjos, M., Lasserre, J.B. (eds.) Handbook on Semidefinite, Cone and Polynomial Optimization, Volume 166, International Series in Operations Research & Management Science, pp. 25–60. Springer, Berlin (2012)

  30. Netzer, T., Plaumann, D., Schweighofer, M.: Exposed faces of semidefinitely representable sets. SIAM J. Optim. 20(4), 1944–1955 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nie, J., Schweighofer, M.: On the complexity of Putinar’s Positivstellensatz. J. Complex. 23(1), 135–150 (2007)

  32. Nie, J., Ranestad, K.: Algebraic degree of polynomial optimization. SIAM J. Optim. 20(1), 485–502 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Nie, J.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. Ser. A 137(1–2), 225–255 (2013)

  34. Nie, J.: Certifying convergence of Lasserre’s hierarchy via flat truncation. Math. Program. Ser. A 142(1–2), 485–510 (2013)

  35. Nie, J.: Optimality conditions and finite convergence of Lasserre’s hierarchy. Math. Program. Ser. A 146(1–2), 97–121 (2014)

  36. Nie, J.: The A-Truncated K-Moment Problem. Preprint (2012)

  37. Parrilo, P.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. Ser. B 96(2), 293–320 (2003)

  38. Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions. In: Basu, S., Gonzalez-Vega, L. (eds.) Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science, volume 60 of DIMACS Series in Discrete Mathematics and Computer Science, pp. 83–99. AMS (2003)

  39. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Ind. Univ. Math. J. 42, 969–984 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  40. Reznick, B.: Some concrete aspects of Hilbert’s 17th problem. In: Contemp. Math. vol. 253, pp. 251–272. American Mathematical Society (2000)

  41. Reznick, B.: Sums of even powers of real linear forms. Memoirs of the American Mathematical Society, vol. 96, no. 463, pp. 1–155

  42. Rogers C.A.: Probability measures on compact sets. Proc. Lond. Math. Soc. (3) 52(2), 328–348 (1986)

  43. Scheiderer, C.: Semidefinite Representation for Convex Hulls of Real Algebraic Curves. Preprint (2012)

  44. Tchakaloff, V.: Formules de cubatures mécanique à coefficients non négatifs. Bull. Sci. Math. 81(2), 123–134 (1957)

  45. Zhou, A., Fan, J.: The CP-matrix completion problem. SIAM J. Matrix Anal. Appl. 35(1), 127–142 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawang Nie.

Additional information

The research was partially supported by the NSF Grants DMS-0844775 and DMS-1417985.

Appendix: Checking \(K\)-fullness

Appendix: Checking \(K\)-fullness

Recall that \(\mathbb {R}[x]_{\mathcal {A}}\) is \(K\)-full if there exists \(p \in \mathbb {R}[x]_{\mathcal {A}}\) that is positive on \(K\). We can check whether \(\mathbb {R}[x]_{\mathcal {A}}\) is \(K\)-full or not as follows. Clearly, \(\mathbb {R}[x]_{\mathcal {A}}\) is \(K\)-full if and only if there exists \(\lambda \in \mathbb {R}^{\mathcal {A}}\) such that

$$\begin{aligned} \sum _{\alpha \in \mathcal {A}} \lambda _\alpha x^\alpha - 1 \in \fancyscript{P}_{\mathcal {A}^\prime }(K), \end{aligned}$$
(6.1)

where \(\mathcal {A}^\prime = \mathcal {A}\cup \{ 0 \}\). Since \( 1\in \fancyscript{P}_{\mathcal {A}^\prime }(K)\), \(\mathbb {R}[x]_{\mathcal {A}^\prime }\) is always \(K\)-full. Thus, checking \(K\)-fullness is reduced to solving a feasibility/infeasiblity issue. This question was discussed in Sect. 5. Suppose \(K\) is a compact semialgebraic set as in (1.2). If \(\mathbb {R}[x]_{\mathcal {A}}\) is \(K\)-full, we can get a \(\lambda \) satisfying (6.1) (cf. Sect. 5.1). If \(\mathbb {R}[x]_{\mathcal {A}}\) is not \(K\)-full, we can get a certificate for nonexistence of such \(\lambda \), under a general assumption (cf. Lemma 5.5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, J. Linear optimization with cones of moments and nonnegative polynomials. Math. Program. 153, 247–274 (2015). https://doi.org/10.1007/s10107-014-0797-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0797-6

Keywords

Mathematics Subject Classification

Navigation