Skip to main content

Advertisement

Log in

Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau in Sém Anal Convexe Montpellier, 1971) with motivation in plasticity theory. The first new variant is concerned with the perturbation of the normal cone to the moving convex subset \(C(t)\), supposed to have a bounded variation, by a Lipschitz mapping. Under some assumptions on the data, we show that the perturbed differential measure inclusion has one and only one right continuous solution with bounded variation. The second variant, for which a large analysis is made, concerns a first order sweeping process with velocity in the moving set \(C(t)\). This class of problems subsumes as a particular case, the evolution variational inequalities [widely used in applied mathematics and unilateral mechanics (Duvaut and Lions in Inequalities in mechanics and physics. Springer, Berlin, 1976]. Assuming that the moving subset \(C(t)\) has a continuous variation for every \(t\in [0,T]\) with \(C(0)\) bounded, we show that the problem has at least a Lipschitz continuous solution. The well-posedness of this class of sweeping process is obtained under the coercivity assumption of the involved operator. We also discuss some applications of the sweeping process to the study of vector hysteresis operators in the elastoplastic model (Krejčı in Eur J Appl Math 2:281–292, 1991), to the planning procedure in mathematical economy (Henry in J Math Anal Appl 41:179–186, 1973 and Cornet in J. Math. Anal. Appl. 96:130–147, 1983), and to nonregular electrical circuits containing nonsmooth electronic devices like diodes (Acary et al. Nonsmooth modeling and simulation for switched circuits. Lecture notes in electrical engineering. Springer, New York 2011). The theoretical results are supported by some numerical simulations to prove the efficiency of the algorithm used in the existence proof. Our methodology is based only on tools from convex analysis. Like other papers in this collection, we show in this presentation how elegant modern convex analysis was influenced by Moreau’s seminal work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Acary, V., Bonnefon, O., Brogliato, B.: Nonsmooth Modeling and Simulation for Switched Circuits. Lecture Notes in Electrical Engineering, vol. 69. Springer, Dordrecht (2011). ISBN 978-90-481-9680-7

  2. Addi, K., Brogliato, B., Goeleven, D.: A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems. Appl. Electron. Math. Program. 126(1), 31–67 (2011)

    Google Scholar 

  3. Addi, K., Adly, S., Brogliato, B., Goeleven, D.: A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics. Nonlinear Anal. Hybrid Syst. 1(1), 30–43 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Adly, S., Cibulka, R., Massias, H.: Variational analysis and generalized equations in electronics. Set-valued Var. Anal. (2013) (to appear)

  5. Adly, S., Goeleven, D., Le, B.K.: Stability analysis and attractivity results of a DC–DC buck converter. Set Valued Var. Anal. 20, 331–353 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Adly, S., Outrata, J.: Qualitative stability of a class of non-monotone variational inclusions. J.Convex Anal. Appl. Electron. 20, 1 (2013)

    MathSciNet  Google Scholar 

  7. Benabdellah, H.: Existence of solutions to the nonconvex sweeping process. J. Differ. Equ. 164, 285–295 (2000)

    Article  MathSciNet  Google Scholar 

  8. Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and its Applications, vol. 109, Cambridge University Press, Cambridge (2010)

  9. Bounkhel, M., Thibault, L.: Nonconvex sweeping process and prox-regularity in Hilbert space. J. Nonlinear Convex Anal. 6, 359–374 (2005)

    MATH  MathSciNet  Google Scholar 

  10. Brezis, H.: Operateurs Maximaux Monotones. North Holland, Amsterdam (1973)

    MATH  Google Scholar 

  11. Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions, Applied Mathematical Sciences, vol. 121. Springer, Berlin (1996)

    Book  Google Scholar 

  12. Brogliato, B., Thibault, L.: Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems. J. Convex Anal. 17(3–4), 961–990 (2010)

    MATH  MathSciNet  Google Scholar 

  13. Castaing, C.: Equation différentielle multivoque avec contrainte sur l’état dans les espaces de Banach. Sem. Anal. Convexe Montpellier (1978), Exposé 13

  14. Castaing, C., Duc Ha, T.X., Valadier, M.: Evolution equations governed by the sweeping process. Set-Valued Anal. 1, 109–139 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Castaing, C., Monteiro Marques, M.D.P.: BV periodic solutions of an evolution problem associated with continuous moving convex sets. Set-Valued Anal. 3, 381–399 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Castaing, C., Monteiro Marques, M.D.P.: Evolution problems associated with non-convex closed moving sets with bounded variation. Portugaliae Math 53, 73–87 (1996)

    MATH  MathSciNet  Google Scholar 

  17. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  18. Colombo, G., Goncharov, V.V.: The sweeping process without convexity. Set-Valued Anal. 7, 357–374 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Colombo, G., Monteiro, M.D.P.: Marques, sweeping by a continuous prox-regular set. J. Differ. Equ. 187, 46–62 (2003)

    Article  MATH  Google Scholar 

  20. Colombo, G., Thibault, L.: Prox-regular sets and applications. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis. International Press, Vienna (2010)

  21. Cornet, B.: Existence of slow solutions for a class of differential inclusions. J. Math. Anal. Appl. 96, 130–147 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  22. Correa, R., Jofre, A., Thibault, L.: Subdifferential characterization of convexity. In: Du, D., Qi, L., Womersley, R. (eds.) Recent Advances in Nonsmooth Optimization, pp. 18–23. World Scientific, Singapore (1995)

  23. Dinculeanu, N.: Vector Measures. Pergamon, Oxford (1967)

    Google Scholar 

  24. Duvaut, D., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  25. Edmond, J.F., Thibault, L.: Relaxation of an optimal control problem involving a perturbed sweeping process. Math. Program. 104, 347–373 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Edmond, J.F., Thibault, L.: BV solutions of nonconvex sweeping process differential inclusions with perturbation. J. Differ. Equ. 226, 135–179 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Haddad, T., Jourani, A., Thibault, L.: Reduction of sweeping process to unconstrained differential inclusion. Pac. J. Optim. 4, 493–512 (2008)

    MATH  MathSciNet  Google Scholar 

  28. Haddad, T., Thibault, L.: Mixed semicontinuous perturbations of nonconvex sweeping processes. Math. Program. Ser. B. 123, 225–240 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Henry, C.: An existence theorem for a class of differential equations with multivalued right-hand side. J. Math. Anal. Appl. 41, 179–186 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms I & II, Grundlehren der Mathematischen Wissenschaften, vol. 305–306, Springer, New York (1993)

  31. Krejčı, P.: Vector hysteresis models. Eur. J. Appl. Math. 2, 281–292 (1991)

    Article  MATH  Google Scholar 

  32. Kunze, M., Monteiro Marques, M.D.P.: On parabolic quasi-variational inequalities and state-dependent sweeping processes. Topol. Methods Nonlinear Anal. 12, 179–191 (1998)

    Google Scholar 

  33. Kunze, M., Monteiro Marques, M.D.P.: Portugaliae Math. On the discretization of degenerate sweeping process 55, 219–232 (1998)

    MATH  MathSciNet  Google Scholar 

  34. Kunze, M., Monteiro Marques, M.D.P.: An introduction to Moreau’s sweeping process. In: Brogliato, B. (ed.) Impacts in Mechanical Systems. Analysis and Modelling, pp. 1–60. Springer, Berlin (2000)

  35. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, London (1995)

    Book  MATH  Google Scholar 

  36. Maury, B., Venel, J.: A mathematical framework for a crowd motion model. C. R. Math. Acad. Sci. Paris 346, 1245–1250 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Monteiro Marques, M.D.P.: Perturbations convexes semi-continues supérieurement dans les espaces de Hilbert. Sem. Anal. Convexe Montpellier (1984), Exposé 2

  38. Monteiro Marques, M.D.P.: Differential Inclusions in Nonsmooth Mechanical Problems, Shocks and Dry Friction. Birkhauser, Basel (1993)

  39. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MATH  MathSciNet  Google Scholar 

  40. Moreau, J.J.: Sur l’évolution d’un système élastoplastique. C. R. Acad. Sci. Paris Ser. A–B 273, A118–A121 (1971)

    MathSciNet  Google Scholar 

  41. Moreau, J.J.: Rafle par un convexe variable I. Sém. Anal. Convexe Montpellier (1971), Exposé 15

  42. Moreau, J.J.: Rafle par un convexe variable II, Sém. Anal. Convexe Montpellier (1972), Exposé 3

  43. Moreau, J.J.: On unilateral constraints, friction and plasticity. In: Capriz, G., Stampacchia, G. (eds.) New Variational Techniques in Mathematical Physics, pp. 173–322. C.I.M.E. II Ciclo 1973, Edizioni Cremonese, Rome (1974)

  44. Moreau, J.J.: Sur les mesures différentielles des fonctions vectorielles à variation bornée. Sem. Anal. Convexe Montpellier (1975), Exposé 17

  45. Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ. 26, 347374 (1977)

    Google Scholar 

  46. Moreau, J.J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 177, 329–349 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  47. Moreau, J.J.: An introduction to unilateral dynamics. In: Frémond, M., Maceri, F. (eds.) Novel Approaches in Civil Engineering. Springer, Berlin (2002)

  48. Moreau, J.J.: Fonctionnelles Convexes. Edizioni del Dipartimento di Ingegneria Civile dell’Università di Roma (2003)

  49. Moreau, J.J., Valadier, M.: A chain rule involving vector functions of bounded variation. J. Funct. Anal. 74, 333–345 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  50. Pang, J.S., Stewart, D.E.: Differential variational inequalities. Math. Progam. Ser. A 113, 345–424 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  51. Phelps, R.R.: Convex Functions. Monotone Operators and Differentiability. Lecture Notes in Mathematics. Springer, Berlin (1989)

  52. Poliquin, R.A.: Subgradient monotonicity and convex functions. Nonlinear Anal. 14, 385–398 (1990)

    Article  MathSciNet  Google Scholar 

  53. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  54. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  55. Rockafellar, R.T.: Convex integral functionals and duality. In: Zarantonello, E. (ed.) Contributions to Nonlinear Functional Analysis, pp. 215–236. Academic Press, London (1971)

  56. Rockafellar, R.T.: Conjugate Duality and Optimization. Conferences Board of Mathematics Sciences Series, vol. 16. SIAM, Philadelphia (1974)

  57. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, New York (1998)

  58. Thibault, L.: Sweeping process with regular and nonregular sets. J. Differ. Equ. 193, 1–26 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  59. Valadier, M.: Quelques problèmes d’entrainement unilatéral en dimension finie, Sem. Anal. Convexe Montpellier (1988), Exposé 8

  60. Valadier, M.: Rafle et viabilité, Sem. Anal. Convexe Montpellier (1992), Exposé 17

  61. Visintin, A.: Differential Models of Hysteresis. Applied Mathematical Sciences, vol. 111. Springer, Berlin (1994)

    Book  Google Scholar 

  62. Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Adly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adly, S., Haddad, T. & Thibault, L. Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities. Math. Program. 148, 5–47 (2014). https://doi.org/10.1007/s10107-014-0754-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0754-4

Keywords

Mathematics Subject Classification

Navigation