Skip to main content

B&B Solution Technique for Multicriteria Stochastic Optimization Problems

  • Chapter
  • First Online:
Optimization Methods and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 130))

Abstract

The paper extends stochastic branch and bound (SB&B) method, primarily developed for solving stochastic global and integer stochastic programming problems, to stochastic multicriteria problems. The specific feature and difficulty of the stochastic optimization problems consists in that they contain random parameters and thus mathematical expectations and other probabilistic integral operators. The scalar stochastic branch and bound method has found various applications for optimization of stochastic workflow models, stochastic schedules, project management, water quality, pollution control, service allocation, reliability optimization, financial portfolio selection, and others. Multicriteria versions of such problems allow more explicit investigation of a trade-off between utility, risk, and other criteria in the problem. In the new SB&B method, upper and lower bounds become vectorial. For example, for a maximization problem, as an upper bound, the value of the vector objective function at the ideal point can be used; as a lower bound, the value of the vector objective function at any feasible point is usually taken. For stochastic optimization problems, such bounds can be calculated exactly only in special cases, for example, when the distribution of random parameters is known and discrete. In the latter case, the estimation problems are reduced to mixed-integer programming. In a general case to get upper bounds, the so-called interchange relaxation is applied, i.e., interchange of optimization and integration operators. Another bounding technique involves the use of multiple independent observations of random parameters and stochastic tangent majorants. Since the bounds are vectorial and may be inexact, the convergence results state finite step convergence to a set of approximate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ahmed, S.: Tutorial on stochastic integer programming. Available via http://stoprog.org/what-stochastic-programming.Cited20Dec2016

  2. Bayraksan, G., Morton, D.P.: Assessing solution quality in stochastic programs. Math. Program. Ser. B. 108, 495–514 (2006)

    Google Scholar 

  3. Ben Abdelaziz, F.: Solution approaches for the multiobjective stochastic programming. Eur. J. Oper. Res. 216, 1–16 (2012)

    Google Scholar 

  4. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)

    Google Scholar 

  5. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)

    Google Scholar 

  6. Doerner, K., Gutjahr, W.J., Kotsis, G., Polaschek, M., Strauss, C.: Enriched workflow modeling and stochastic branch-and-bound. Eur. J. Oper. Res. 175, 1798–1817 (2006)

    Google Scholar 

  7. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  8. Ehrgott, M., Gandibleux, X.: Bounds and bound sets for biobjective combinatorial optimization problems. In: Köksalan, M., Zionts, S. (eds.) Multiple Criteria Decision Making in the New Millenium. Lecture Notes in Economics and Mathematical Systems, vol. 507, pp. 242–253. Springer, Berlin (2001)

    Google Scholar 

  9. Ehrgott, M., Gandibleux, X.: Multiobjective combinatorial optimization – theory, methodology, and applications. In: Ehrgott, M., Gandibleux, X. (eds.) Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, pp. 369–444. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  10. Ermoliev, Yu., Wets, R.J-B. (eds.): Numerical Techniques for Stochastic Optimization. Springer, Berlin (1988)

    Google Scholar 

  11. Ermoliev, Yu.M., Norkin, V.I.: Solution of nonconvex nonsmooth stochastic optimization problems. Cybernet. Syst. Anal. 39(5), 701–715 (2003)

    Google Scholar 

  12. Fliege, J., Xu, H.: Stochastic multiobjective optimization: sample average approximation and applications. J. Optim. Theory Appl. 151, 135–162 (2011)

    Google Scholar 

  13. Gittins, J.C.: Multi-Armed Bandit Allocation Indices. Wiley, Chichester (1989)

    Google Scholar 

  14. Gubbons, L.D., Olkin, I., Sobel M.: Selecting and Ordering Populations: A New Statistical Methodology. Wiley, New York (1977)

    Google Scholar 

  15. Gupta, S.S., Panchapakesan, S.: Multiple Decision Procedures: Theory and Methodology of Selecting and Ranking Populations. Wiley, New York (1979)

    Google Scholar 

  16. Gutjahr, W., Pichler, A.: Stochastic multi-objective optimization: a survey on non-scalarizing methods. Ann. Oper. Res. 236, 1–25 (2013)

    Google Scholar 

  17. Gutjahr, W.J., Hellmayr, A., Pflug, G.C.: Optimal stochastic single-machine-tardiness scheduling by stochastic branch-and-bound. Eur. J. Oper. Res. 117, 396–413 (1999)

    Google Scholar 

  18. Gutjahr, W.J., Strauss, C., Wagner, E.: A stochastic branch and bound approach to activity crashing in project management. INFORMS J. Comput. 12(2), 125–135 (2000)

    Google Scholar 

  19. Hägglöf, K.: The implementation of the stochastic branch and bound method for applications in river basin water quality management. Working paper WP-96-089, International Institute for Applied System Analysis, Laxenburg (1986)

    Google Scholar 

  20. Ho, Y.G., Cao, X.R.: Discrete Event Dynamic Systems and Perturbation Analysis. Kluwer, Norwell, MA (1991)

    Google Scholar 

  21. Kan, Y.S., Kibzun, A.I.: Stochastic Programming Problems with Probabilistic Criteria. FIZMATLIT, Moscow (2009) (in Russian)

    Google Scholar 

  22. Kibzun, A.I., Kan, Yu.S.: Stochastic Programming Problems with Probability and Quantale Functions. Wiley, Chichester (1996)

    Google Scholar 

  23. Kibzun, A.I., Naumov, A.V., Norkin, V.I.: On reducing a quantile optimization problem with discrete distribution to a mixed integer programming problem. Autom. Remote Control. 74(6), 951–967 (2013)

    Google Scholar 

  24. Kirilyuk, V.S.: Risk measures in stochastic programming and robust optimization problems. Cybernet. Systems Anal. 51(6), 874–885 (2015)

    Google Scholar 

  25. Knopov, P.S., Sergienko, I.V.: Some scientific results of Yu. M. Ermoliev and his school in modern stochastic optimization theory. Cybernet. Syst. Anal. 47(6), 835–853 (2011)

    Google Scholar 

  26. Kolen, A.W.J., Spieksma, F.C.R.: Solving a bi-criterion cutting stock problem with open-ended demand. J. Oper. Res. Soc. 51(11), 121–132 (2000)

    Google Scholar 

  27. Kovalenko, I.N., Nakonechnyi, A.N.: Approximate Calculation and Optimization of Reliability. Naukova dumka, Kyiv (1989) (in Russian)

    Google Scholar 

  28. Kozeratska, L., Forbes, J.F., Goebel, R.G., Kresta, J.V.: Perturbed cones for analysis of uncertain multi-criteria optimization problems. Linear Algebra Appl. 378, 203–229 (2004)

    Google Scholar 

  29. Krivulin, N.: Unbiased estimates for gradients of stochastic network performance measures. Acta Appl. Math. 33(1), 21–43 (2016)

    Google Scholar 

  30. Lence, B.J., Ruszczyński, A.: Managing water quality under uncertainty: application of a new stochastic branch and bound method. Working paper WP-96-66, International Institute for Applied System Analysis, Laxenburg (1996)

    Google Scholar 

  31. Lepp, R.E.: Investigations of Estonian scientists on stochastic programming. Engrg. Cybernetics. 20(6), 11–18 (1983)

    Google Scholar 

  32. Louveaux, F., Schultz, R.: Stochastic integer programming. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 213–266. Elsevier, Amsterdam (2003)

    Google Scholar 

  33. Luedtke, J., Ahmed, S., Nemhauser G.: An Integer Programming Approach for Linear Programs with Probabilistic Constraints. Math. Program. 122(2), 247–272 (2010)

    Google Scholar 

  34. Mak, W.K., Morton, D.P., Wood, R.K.: Monte Carlo bounding techniques for determining solution quality in stochastic programs. Oper. Res. Lett. 24, 47–56 (1999)

    Google Scholar 

  35. Marti, K.: Stochastic Optimization Methods. 2nd edn. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  36. Mavrotas, G., Diakoulaki, D.: Multi-criteria branch and bound: a vector maximization algorithm for Mixed 0-1 Multiple Objective Linear Programming. Appl. Math. Comput. 171, 53–71 (2005)

    Google Scholar 

  37. Mikhalevich, V.S., Gupal, A.M., Norkin, V.I.: Methods of Nonconvex Optimization. Nauka, Moscow (1987) (in Russian)

    Google Scholar 

  38. Norkin, V.I.: Piyavskii’s method for solving the general global optimization problem. Comput. Math. Math. Phys. 32(7), 873–886 (1992)

    Google Scholar 

  39. Norkin, V.I.: Global stochastic optimization: branch and probabilistic bounds method. In: Ermoliev, Y.M. (ed.) Metody upravleniya i prinyatiya resheniy v usloviyah riska i neopredelennosti, pp. 3–12. V.M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv (1993) (in Russian)

    Google Scholar 

  40. Norkin, V.: Global optimization of probabilities by the stochastic branch and bound method. In: Marti, K., Kall, P. (eds.) Stochastic Programming and Technical Applications. Lecture Notes in Economics and Mathematical Systems, vol. 458, pp. 186–201. Springer, Berlin (1998)

    Google Scholar 

  41. Norkin, V.: On mixed integer reformulations of monotonic probabilistic programming problems with discrete distributions. Optimization-online (2010). Available via http://www.optimization-online.org/DB_HTML/2010/05/2619.html

  42. Norkin B.V.: Systems simulation analysis and optimization of insurance business. Cybernet. Syst. Anal. 50(2), 260–270 (2014)

    Google Scholar 

  43. Norkin B.V.: Statistical approximation of multicriteria stochastic optimization problems. Dopov. Nac. Akad. Nauk Ukr. (Reports of the National Academy of Sciences of Ukraine) 4, 35–41 (2015)

    Google Scholar 

  44. Norkin, V.I., Boyko, S.V.: Safety-first portfolio selection. Cybernet. Systems Anal. 48(2), 180–191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Norkin, V.I., Onishchenko, B.O.: Minorant methods of stochastic global optimization. Cybernet. Syst. Anal. 41(2), 203–214 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Norkin, V.I., Onishchenko, B.O.: Reliability optimization of a complex system by the stochastic branch and bound method. Cybernet. Syst. Anal. 44(3), 418–428 (2008)

    Article  MATH  Google Scholar 

  47. Norkin, V.I., Roenko, N.V.: α-concave functions and measures and their applications. Cybernet. Syst. Anal. 27(6), 860–869 (2005)

    Google Scholar 

  48. Norkin, V.I., Ermoliev, Yu.M., Ruszczyński, A.: On Optimal Allocation of Indivisibles under Uncertainty, Working Paper WP-94-021, Int. Inst. for Appl. System Anal., Laxenburg (1994)

    Google Scholar 

  49. Norkin, V.I., Pflug, G.Ch., Ruszczyński A.: A Branch and Bound Method for Stochastic Global Optimization, Working Paper WP-96-065, Int. Inst. for Appl. System Anal., Laxenburg (1996)

    Google Scholar 

  50. Norkin, V.I., Ermoliev, Y.M., Ruszczynski, A.: On optimal allocation of indivisibles under uncertainty. Oper. Res. 16(3), 381–395 (1998)

    Article  MATH  Google Scholar 

  51. Norkin V.I., Pflug, G.Ch., Ruszczyńiski, A.: A branch and bound method for stochastic global optimization. Math. Progr. 83, 425–450 (1998)

    MathSciNet  MATH  Google Scholar 

  52. Norkin, V.I., Kibzun, A.I., Naumov, A.V.: Reducing two-stage probabilistic optimization problems with discrete distribution of random data to mixed-integer programming problems. Cybernet. Syst. Anal. 50(5), 679–692 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Pflug, G.Ch.: Optimization of Stochastic Models. The interface Between Simulation and Optimization. Kluwer Academic Publishers, Boston (1996)

    Book  MATH  Google Scholar 

  54. Piyavskii, S.A.: An algorithm for finding the absolute extremum of a function. U.S.S.R. Comput. Math. Math. Phys. 12 (4), 57–67 (1972)

    Google Scholar 

  55. Powell W.B.: A unified framework for optimization under uncertainty. In: TutORials in Operations Research. Optimization Challenges in Complex, Networked and Risky Systems, pp. 45–83. INFORMS. Available via http://dx.doi.org/10.1287/educ.2016.0149 (2016)

  56. Prékopa, A.: Stochastic Programming. Kluwer Academic Publishers, Dordrecht (1995)

    Book  MATH  Google Scholar 

  57. Rana, K., Vickson, R.G.: A model and solution algorithm for optimal routing of a time-chartered containership. Transport. Sci. 22, 83–96 (1988)

    Article  MATH  Google Scholar 

  58. Rinnooy Kan, A.H.G., Stougie, L.: Stochastic Integer Programming. In: Ermoliev, Yu., Wets, R.J-B. (eds.) Numerical Techniques for Stochastic Optimization, pp. 201–213. Springer, Berlin (1988)

    Google Scholar 

  59. Rockafellar, R.T.: Coherent approaches to risk in optimization under uncertainty. In INFORMS Tutor. Oper. Res. Published online: 14 Oct 2014; 38–61. https://doi.org/10.1287/educ.1073.0032

    Google Scholar 

  60. Rubinstein, R.Y., Shapiro A.: The optimization of discrete event dynamic systems by the score function method. Wiley, New York (1993)

    MATH  Google Scholar 

  61. Ruszczyński, A.: Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra. Math. Program. 93, 195–215 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  62. Ruszczyński, A., Shapiro, A. (eds.): Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10. Elsevier, Amsterdam (2003)

    Google Scholar 

  63. Sawaragi, S., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic, Orlando (1985)

    MATH  Google Scholar 

  64. Sergienko, I.V.: Methods of Optimization and Systems Analysis for Problems of Transcomputational Complexity. Springer, New York (2012)

    Book  MATH  Google Scholar 

  65. Sergienko, I.V.: Topical Directions of Informatics. In Memory of V.M. Glushkov. Springer, New York (2014)

    Book  MATH  Google Scholar 

  66. Sergienko, I.V., Shylo, V.P.: Tasks of Discrete Optimization. Problems, Solution Methods, Research. Naukova dumka, Kyiv (2003)

    MATH  Google Scholar 

  67. Sergienko, I.V., Kozeratskaya, L.N., Lebedeva, T.T.: Stability and Parametric Analysis of Discrete Optimization Problems. Naukova Dumka, Kiev (1995)

    MATH  Google Scholar 

  68. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  69. Shor, N.Z.: Nondifferentiable Optimization and Polynomial Problems. Kluwer Academic Publishers, Boston, Dordrecht, London (1998)

    Book  MATH  Google Scholar 

  70. Sourd, F., Spanjaard, O.: A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem. INFORMS J. Comput. 20(3), 472–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  71. Stancu-Minasian, I.M.: Overview of different approaches for solving stochastic programming problems with multiple objective functions. In: Slowinski, R., Teghem, J. (eds.) Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming Under Uncertainty, pp. 71–101. Kluwer Academic Publishers, Dordrecht (1990)

    Chapter  Google Scholar 

  72. Statnikov, R.B., Matusov, J.B.: Multicriteria Analysis in Engineering. Kluwer Academic Publishers, Dordrecht (2002)

    Book  MATH  Google Scholar 

  73. T’Kindt, V., Billaut, J-Ch.: Multicriteria scheduling problems. In: Ehrgott, M., Gandibleux, X. (eds.) Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, pp. 446–491. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  74. Ulungu, E., Teghem, J.: Solving multi-objective knapsack problem by a branch-and-bound procedure. In: Climaco, J. (ed.) Multicriteria Analysis, pp. 269–278. Springer, Berlin (1997)

    Google Scholar 

  75. Uryasev, S.: Derivatives of Probability Functions and Some Applications. Ann. Oper. Res. 56, 287–311 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  76. Uryasev, S.: Analytic perturbation analysis for DEDS with discontinuous sample-path functions. Commun. Stat. Stoch. Model. 13(3), 457–490 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  77. Visée, M., Teghem, J., Pirlot, M., Ulungu, E.: Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem. J. Global Optim. 12, 139–155 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  78. Xu, W.L, Nelson, B.L.: Empirical stochastic branch-and-bound for optimization via simulation. IIE Trans. 45(7), 685–698 (2013)

    Article  Google Scholar 

  79. Yudin, D.B.: Problems and Methods of Stochastic Programming. Nauka, Moscow (1979) (in Russian)

    MATH  Google Scholar 

  80. Zhigljavsky, A., žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Norkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Norkin, V.I. (2017). B&B Solution Technique for Multicriteria Stochastic Optimization Problems. In: Butenko, S., Pardalos, P., Shylo, V. (eds) Optimization Methods and Applications . Springer Optimization and Its Applications, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-319-68640-0_17

Download citation

Publish with us

Policies and ethics