Skip to main content
Log in

Biochemical characterization of pathogenic bacterial species using Raman spectroscopy and discrimination model based on selected spectral features

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the differences in the Raman spectra of nine clinical species of bacteria isolated from infections (three Gram-positive and six Gram-negative species), correlating the spectra with the chemical composition of each species and to develop a classification model through discriminant analysis to categorize each bacterial strain using the peaks with the most significant differences. Bacteria were cultured in Mueller Hinton agar and a sample of biomass was harvested and placed in an aluminum sample holder. A total of 475 spectra from 115 different strains were obtained through a dispersive Raman spectrometer (830 nm) with exposure time of 50 s. The intensities of the peaks were evaluated by one-way analysis of variance (ANOVA) and the peaks with significant differences were related to the differences in the biochemical composition of the strains. Discriminant analysis based on quadratic distance applied to the peaks with the most significant differences and partial least squares applied to the whole spectrum showed 89.5% and 90.1% of global accuracy, respectively, for classification of the spectra in all the groups. Raman spectroscopy could be a promising technique to identify spectral differences related to the biochemical content of pathogenic microorganisms and to provide a faster diagnosis of infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization (2015) Facts and sheets. Details. Antibiotic resistance. WHO, Geneva http://www.who.int/mediacentre/factsheets/antibiotic-resistance/en/. Accessed 10 February 2019

    Google Scholar 

  2. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118(1):146–155. https://doi.org/10.1378/chest.118.1.146

    Article  CAS  PubMed  Google Scholar 

  3. Kerremans JJ, Verboom P, Stijnen T, Van Roijen LH, Goessens W, Verbrugh HA, Vos MC (2008) Rapid identification and antimicrobial susceptibility testing reduce antibiotic use and accelerate pathogen-directed antibiotic use. J Antimicrob Chemother 61(2):428–435. https://doi.org/10.1093/jac/dkm497

    Article  CAS  PubMed  Google Scholar 

  4. Breed RS, Murray EGD, Smith NR (1957) Bergey’s manual of determinative bacteriology. The Williams and Wilkins Company, Baltimore

    Google Scholar 

  5. D’Souza HA, Campbell M, Baron EJ (2004) Practical bench comparison of BBL CHROMagar Orientation and standard two-plate media for urine cultures. J Clin Microbiol 42(1):60–64. https://doi.org/10.1128/jcm.42.1.60-64.2004

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hill SC, Pinnick RG, Niles S, Pan Y-L, Holler S, Chang RK, Bottiger JR, Chen BT, Orr C-S, Feather GA (1999) Real-time measurement of fluorescence spectra from single airborne biological particles. Field Anal Chem Technol 3:221–239. https://doi.org/10.1002/(sici)1520-6521(1999)3:4/5<221::aid-fact2>3.0.co;2-7

    Article  CAS  Google Scholar 

  7. Spector BC, Reinisch L, Smith D, Werkhaven JA (2000) Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model. Laryngoscope 110(7):1119–1123. https://doi.org/10.1097/00005537-200007000-00009

    Article  CAS  PubMed  Google Scholar 

  8. Giana HE, Silveira L, Zângaro RA, Pacheco MTT (2003) Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis. J Fluoresc 13(6):489–493. https://doi.org/10.1023/B:JOFL.0000008059.74052.3c

    Article  CAS  Google Scholar 

  9. Maquelin K, Kirschner C, Choo-Smith LP, Ngo-Thi NA, van Vreeswijk T, Stämmler M, Endtz HP, Bruining HA, Naumann D, Puppels GJ (2003) Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J Clin Microbiol 41(1):324–329. https://doi.org/10.1128/jcm.41.1.324-329.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jaureguiberry M, Madoz LV, Giuliodori MJ, Wagener K, Prunner I, Grunert T et al (2016) Identification of Escherichia coli and Trueperella pyogenes isolated from the uterus of dairy cows using routine bacteriological testing and Fourier transform infrared spectroscopy. Acta Vet Scand 58(1):81. https://doi.org/10.1186/s13028-016-0262-z

    Article  PubMed  PubMed Central  Google Scholar 

  11. Romanolo KF, Gorski L, Wang S, Lauzon CR (2015) Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using Fourier transform-infrared spectroscopy and artificial neural network analysis. PLoS One 10(11):e0143425. https://doi.org/10.1371/journal.pone.0143425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maquelin K, Kirschner C, Choo-Smith LP, Nvan den Braak H, Endtz HP, Naumann D, Puppels GJ (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 51(3):255–271. https://doi.org/10.1016/S01677012(02)001276

    Article  CAS  PubMed  Google Scholar 

  13. Choo-Smith LP, Maquelin K, van Vreeswijk T, Bruining HA, Puppels GJ, Ngo Thi NA, Kirschner C, Naumann D, Ami D, Villa AM, Orsini F, Doglia SM, Lamfarraj H, Sockalingum GD, Manfait M, Allouch P, Endtz HP (2001) Investigating microbial (micro) colony heterogeneity by vibrational spectroscopy. Appl Environ Microbiol 67(4):1461–1469. https://doi.org/10.1128/AEM.67.4.1461-1469.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rösch P, Schmitt M, Kiefer W, Popp J (2003) The identification of microorganisms by micro-Raman spectroscopy. J Mol Struct 661-662:363–369. https://doi.org/10.1016/j.molstruc.2003.06.004

    Article  CAS  Google Scholar 

  15. Harz M, Rösch P, Peschke KD, Ronneberger O, Burkhardt H, Popp J (2005) Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst 130(11):1543–1550. https://doi.org/10.1039/b507715j

    Article  CAS  PubMed  Google Scholar 

  16. Maquelin K, Dijkshoorn L, van der Reijden TJ, Puppels GJ (2006) Rapid epidemiological analysis of Acinetobacter strains by Raman spectroscopy. J Microbiol Methods 64(1):126–131. https://doi.org/10.1016/j.mimet.2005.04.028

    Article  CAS  PubMed  Google Scholar 

  17. Willemse-Erix DFM, Scholtes-Timmerman MJ, Jachtenberg JW, van Leeuwen WB, Horst-Kreft D, Schut TC, Deurenberg RH, Puppels GJ, van Belkum A, Vos MC, Maquelin K (2009) Optical fingerprinting in bacterial epidemiology: Raman spectroscopy as a real-time typing method. J Clin Microbiol 47(3):652–659. https://doi.org/10.1128/JCM.01900-08

    Article  PubMed  Google Scholar 

  18. Harz M, Rösch P, Popp J (2009) Vibrational spectroscopy - a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A 75(2):104–113. https://doi.org/10.1002/cyto.a.20682

    Article  CAS  PubMed  Google Scholar 

  19. Paret ML, Sharma SK, Green LM, Alvarez AM (2010) Biochemical characterization of Gram-positive and Gram-negative plant-associated bacteria with micro-Raman spectroscopy. Appl Spectrosc 64(4):433–441. https://doi.org/10.1366/000370210791114293

    Article  CAS  PubMed  Google Scholar 

  20. Oliveira FSS, Giana HE, Silveira L (2012) Discrimination of selected species of pathogenic bacteria using near-infrared Raman spectroscopy and principal components analysis. J Biomed Opt 17(10):107004. https://doi.org/10.1117/1.JBO.17.10.107004

    Article  Google Scholar 

  21. Neugebauer U, Rösch P, Popp J (2015) Raman spectroscopy towards clinical application: drug monitoring and pathogen identification. Int J Antimicrob Agents 46(Suppl 1):35–39. https://doi.org/10.1016/j.ijantimicag.2015.10.014

    Article  CAS  Google Scholar 

  22. Pahlow S, Stöckel S, Pollok S, Cialla-May D, Rösch P, Weber K, Popp J (2016) Rapid identification of Pseudomonas spp. via Raman spectroscopy using pyoverdine as capture probe. Anal Chem 88(3):1570–1577. https://doi.org/10.1021/acs.analchem.5b02829

    Article  CAS  PubMed  Google Scholar 

  23. Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45(2):R51–R59. https://doi.org/10.1088/0031-9155/45/2/201

    Article  Google Scholar 

  24. Kirschner C, Maquelin K, Pina P, Ngo Thi NA, Choo-Smith LP, Sockalingum GD, Sandt C, Ami D, Orsini F, Doglia SM, Allouch P, Mainfait M, Puppels GJ, Naumann D (2001) Classification and identification of Enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study. J Clin Microbiol 39(5):1763–1770. https://doi.org/10.1128/JCM.39.5.1763-1770.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jarvis R, Goodacre R (2004) Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal Chem 76(1):40–47. https://doi.org/10.1021/ac034689c

    Article  CAS  PubMed  Google Scholar 

  26. Hutsebaut D, Vandroemme J, Heyrman J, Dawyndt P, Vandenabeele P, Moens L, de Vos P (2006) Raman microspectroscopy as an identification tool within the phylogenetically homogeneous ‘Bacillus subtilis’ group. Syst Appl Microbiol 29(8):650–660. https://doi.org/10.1016/j.syapm.2006.02.001

    Article  PubMed  Google Scholar 

  27. Jarvis R, Goodacre R (2008) Characterization and identification of bacteria using SERS. Chem Soc Rev 37(5):931–936. https://doi.org/10.1039/b705973f

    Article  CAS  Google Scholar 

  28. Maquelin K, Choo-Smith LP, van Vreeswijk T, Endtz HP, Bennett BSR, Bruining HA, Puppels GJ (2000) Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium. Anal Chem 72(1):12–19. https://doi.org/10.1021/ac991011h

    Article  CAS  PubMed  Google Scholar 

  29. Zeiri L, Bronk BV, Shabtai Y, Eichler J, Efrima S (2004) Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria. Appl Spectrosc 58(1):33–40. https://doi.org/10.1366/000370204322729441

    Article  CAS  PubMed  Google Scholar 

  30. Ciobotă V, Burkhardt EM, Schumacher W, Rösch P, Küsel K, Popp J (2010) The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy. Anal Bioanal Chem 397(7):2929–2937. https://doi.org/10.1007/s00216-010-3895-1

    Article  CAS  PubMed  Google Scholar 

  31. Naumann D, Barnickel G, Bradaczek H, Labischinski H, Giesbrecht P (1982) Potentialities of infrared spectroscopy for cell wall analytical studies and rejection of models based on crystalline chitin. Eur J Biochem 125(3):505–515. https://doi.org/10.1111/j.1432-1033.1982.tb06711.x

    Article  CAS  PubMed  Google Scholar 

  32. Lasch P (2012) Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom Intell Lab Syst 117:100–114. https://doi.org/10.1016/j.chemolab.2012.03.011

    Article  CAS  Google Scholar 

  33. McHugh ML (2011) Multiple comparison analysis testing in ANOVA. Biochemia Medica 21(3):203–209. https://doi.org/10.11613/BM.2011.029

    Article  CAS  PubMed  Google Scholar 

  34. Ripley BD (1998) Pattern classification and neural networks. Cambridge University Press, Cambridge

    Google Scholar 

  35. Barker M, Rayens W (2003) Partial least squares for discrimination. J Chemometrics 17:166–173. https://doi.org/10.1002/cem.785

    Article  CAS  Google Scholar 

  36. Nunes CA, Freitas MP, Pinheiro ACM, Bastos SC (2012) Chemoface: a novel free user-friendly interface for chemometrics. J Braz Chem Soc 23(11):2003–2010. https://doi.org/10.1590/s0103-50532012005000073

    Article  CAS  Google Scholar 

  37. She CY, Dinh ND, Thu AT (1974) Laser Raman scattering of glucosamine, N-acetylglucosamine and glucuronic acid. Biochim Biophys Acta 372(2):345–357. https://doi.org/10.1016/0304-4165(74)90196-2

    Article  CAS  Google Scholar 

  38. Talari ACS, Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 50(1):46–111. https://doi.org/10.1080/05704928.2014.923902

    Article  CAS  Google Scholar 

  39. Huang WE, Li M, Jarvis RM, Goodacre R, Banwart SA (2010) Shining light on the microbial world the application of Raman microspectroscopy. Adv Appl Mycrobiol 70:153–186. https://doi.org/10.1016/S0065-2164(10)70005-8

    Article  CAS  Google Scholar 

  40. Lemma T, Saliniemi A, Hynninen V, Hytönen VP, Toppari JJ (2016) SERS detection of cell surface and intracellular components of microorganisms using nano-aggregated Ag substrate. Vib Spectrosc 83:36–45. https://doi.org/10.1016/j.vibspec.2016.01.006

    Article  CAS  Google Scholar 

  41. Jehlicka J, Edwards HGM, Oren A (2014) Raman spectroscopy of microbial pigments. Appl Environ Microbiol 80(11):3286–3295. https://doi.org/10.1128/AEM.00699-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kusic D, Kampe B, Rösch P, Popp J (2014) Identification of water pathogens by Raman microspectroscopy. Water Res 48:179–189. https://doi.org/10.1016/j.watres.2013.09.030

    Article  CAS  PubMed  Google Scholar 

  43. Tang M, McEwen GD, Wu Y, Miller CD, Zhou A (2013) Characterization and analysis of mycobacteria and Gram-negative bacteria and co-culture mixtures by Raman microspectroscopy, FTIR, and atomic force microscopy. Anal Bioanal Chem 405(5):1577–1591. https://doi.org/10.1007/s00216-012-6556-8

    Article  CAS  PubMed  Google Scholar 

  44. Hanai K, Kawai S, Kuwae A (1991) Vibrational and NMR spectra of phenylpyruvic acid and its salts in aqueous solution. J Mol Struct 245(1–2):21–27. https://doi.org/10.1016/0022-2860(91)87003-Z

    Article  CAS  Google Scholar 

  45. Islas S, Becerra A, Luisi PL, Lazcano A (2004) Comparative genomics and the gene complement of a minimal cell. Orig Life Evol Biosph 34(1–2):243–256. https://doi.org/10.1023/B:ORIG.0000009844.90540.52

    Article  CAS  PubMed  Google Scholar 

  46. Siddiqui SA, Dwivedi A, Singh PK, Hasan T, Jain S, Sundaraganesan N, Saleem H, Misra N (2009) Vibrational dynamics and potential energy distribution of two well-known neurotransmitter receptors: tyramine and dopamine hydrochloride. J Theor Comput Chem 8(3):433–450. https://doi.org/10.1142/s0219633609004861

    Article  CAS  Google Scholar 

  47. Heidari H, Bethel CR, Papp-Wallace KM, de Boer PAJ, Bonomo RA, Carey PR (2014) Following drug uptake and reactions inside Escherichia coli cells by Raman microspectroscopy. Biochemistry 53(25):4113–4121. https://doi.org/10.1021/bi500529c

    Article  CAS  Google Scholar 

  48. Jarvis RM, Brooker A, Goodacre R (2004) Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Anal Chem 76(17):5198–5202. https://doi.org/10.1021/ac049663f

    Article  CAS  PubMed  Google Scholar 

  49. Sjoholm I (1975) Protein a from Staphylococcus aureus: spectropolarimetric and spectrophotometric studies. Eur J Biochem 51(1):55–61. https://doi.org/10.1111/j.1432-1033.1975.tb03906.x

    Article  CAS  PubMed  Google Scholar 

  50. Sundaram J, Park B, Kwon Y, Lawrence KC (2013) Surface enhanced Raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens. Int J Food Microbiol 167(1):67–73. https://doi.org/10.1016/j.ijfoodmicro.2013.05.013

    Article  CAS  PubMed  Google Scholar 

  51. Strola SA, Baritaux JC, Schultz E, Simon AC, Allier C, Espagnon I, Jary D, Dinten JM (2014) Single bacteria identification by Raman spectroscopy. J Biomed Opt 19(11):111610. https://doi.org/10.1117/1.JBO.19.11.111610

    Article  CAS  PubMed  Google Scholar 

  52. Wu X, Chen J, Zhao Y, Zughaier SM (2014) Rapid detection of Pseudomonas aeruginosa biomarkers in biological fluids using surface-enhanced Raman scattering. Proc SPIE 9107:91070A. https://doi.org/10.1117/12.2053156

    Article  CAS  Google Scholar 

  53. Premasiri R, Chen Y, Williamson PM, Bandarage DC, Pyles C, Ziegler LD (2017) Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): identification and antibiotic susceptibilities. Anal Bioanal Chem 409(11):3043–3054. https://doi.org/10.1007/s00216-017-0244-7

    Article  CAS  PubMed  Google Scholar 

  54. Hamasha K, Mohaidat QI, Putnam RA, Woodman RC, Palchaudhuri S, Rehse SJ (2013) Sensitive and specific discrimination of pathogenic and nonpathogenic Escherichia coli using Raman spectroscopy-a comparison of two multivariate analysis techniques. Biomed Opt Express 4(4):481–489. https://doi.org/10.1364/BOE.4.000481

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xuan Nguyen NT, Sarter S, Hai Nquyen N, Daniel P (2017) Detection of molecular changes induced by antibiotics in Escherichia coli using vibrational spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 27(183):395–401. https://doi.org/10.1016/j.saa.2017.04.077

    Article  CAS  Google Scholar 

  56. Dekter HE, Orelio CC, Morsink MC, Tektas S, Vis B, te Witt R, van Leeuwen WB (2017) Antimicrobial susceptibility testing of Gram-positive and -negative bacterial isolates directly from spiked blood culture media with Raman spectroscopy. Eur J Clin Microbiol Infect Dis 36(1):81–89. https://doi.org/10.1007/s10096-016-2773-y

    Article  CAS  PubMed  Google Scholar 

  57. de Boer LL, Spliethoff JW, Sterenborg HJ, Ruers TJ (2017) Review: in vivo optical spectral tissue sensing-how to go from research to routine clinical application? Lasers Med Sci 32(3):711–719. https://doi.org/10.1007/s10103-016-2119-0

    Article  PubMed  Google Scholar 

  58. de Lima CJ, Moreira LM, Lyon JP, Villaverde AB, Pacheco MT (2009) Catheters: instrumental advancements in biomedical applications of optical fibers. Lasers Med Sci 24(4):621–626. https://doi.org/10.1007/s10103-008-0608-5

    Article  PubMed  Google Scholar 

Download references

Funding

Partial financial support was provided by São Paulo Research Foundation (FAPESP) (Grant no. 2009/01788-5) and National Council for Scientific and Technological Development (CNPq) (Process no. 307509/2017-6). F. S. S. Oliveira and A. M. da Silva received the doctorate fellowship from Brazilian Ministry of Education, Coordination for the Improvement of Higher Education Personnel (CAPES - PROSUP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Landulfo Silveira Jr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Siqueira e Oliveira, F.S., da Silva, A.M., Pacheco, M.T.T. et al. Biochemical characterization of pathogenic bacterial species using Raman spectroscopy and discrimination model based on selected spectral features. Lasers Med Sci 36, 289–302 (2021). https://doi.org/10.1007/s10103-020-03028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03028-9

Keywords

Navigation