Skip to main content

Advertisement

Log in

Low-level laser therapy affects dentinogenesis and angiogenesis of in vitro 3D cultures of dentin-pulp complex

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

To investigate the effects of gallium-aluminum-arsenide (GaAlAs) diode laser low-level laser therapy (LLLT) on angiogenesis and dentinogenesis of the dentin-pulp complex in a human tooth slice-based in vitro model. Forty tooth slices were prepared from 31 human third molars. Slices were cultured at 37 °C, 5% CO2, and 95% humidity and randomly assigned to one of the following groups: group I: no laser treatment, group II: 660-nm diode laser; energy density = 1 J/cm2, group III: 660-nm diode laser; energy density = 3 J/cm2, group IV: 810-nm diode laser; energy density = 1 J/cm2 and group V: 810-nm diode laser; energy density = 3 J/cm2. LLLT was applied on the third and fifth days of culture. After 7 days, tissues were retrieved for real-time RT-PCR analysis to investigate the expression of VEGF, VEGFR2, DSPP, DMP-1, and BSP in respect to controls. Lower energy density (1 J/cm2) with the 660 nm wavelength showed a statistically significant up-regulation of both angiogenic (VEGF: 15.3-folds and VEGFR2: 3.8-folds) and odontogenic genes (DSPP: 6.1-folds, DMP-1: 3-fold, and BSP: 6.7-folds). While the higher energy density (3 J/cm2) with the 810 nm wavelength resulted in statistically significant up-regulation of odontogenic genes (DSPP: 2.5-folds, DMP-1: 17.7-folds, and BSP: 7.1-folds), however, the angiogenic genes had variable results where VEGF was up-regulated while VEGFR2 was down-regulated. Low-level laser therapy could be a useful tool to promote angiogenesis and dentinogenesis of the dentin-pulp complex when parameters are optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Raedel M, Hartmann A, Bohm S, Walter MH (2015) Three-year outcomes of root canal treatment: mining an insurance database. J Dent 43(4):412–417

    Article  PubMed  Google Scholar 

  2. PVc S, PCsF SF, Queiroz EC, Arajo TC, Campos RE, Arajo CA, Soares CJ (2008) Fracture resistance and stress distribution in endodontically treated maxillary premolars restored with composite resin. J Prosthodont 17(2):114–119

    Article  Google Scholar 

  3. Solomon RV, Faizuddin U, Karunakar P, Deepthi Sarvani G, Sree Soumya S (2015) coronal pulpotomy technique analysis as an alternative to pulpectomy for preserving the tooth vitality, in the context of tissue regeneration: a correlated clinical study across 4 adult permanent molars. Case Rep Dent 2015

  4. Woodruff LD, Bounkeo JM, Brannon WM, Dawes KS, Barham CD, Waddell DL, Enwemeka CS (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22(3):241–247

    Article  PubMed  Google Scholar 

  5. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31(3):334–340

    Article  CAS  PubMed  Google Scholar 

  6. da Silva JP, da Silva MA, APF A, IrL J, Matos AP (2010) Laser therapy in the tissue repair process: a literature review. Photomed Laser Surg 28(1):17–21

    Article  PubMed  Google Scholar 

  7. AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27(1):237–249

    Article  PubMed  Google Scholar 

  8. Huang Y-Y, Chen ACH, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response 7(4):dose–response 09-027

    Article  Google Scholar 

  9. Pinheiro ALB, Nascimento SC, de Barros Vieira AL, Brugnera A Jr, Zanin FA, Rolim Az B, Soriano da Silva P (2002) Effects of low-level laser therapy on malignant cells: in vitro study. J Clin Laser Med Surg 20(1):23–26

    Article  PubMed  Google Scholar 

  10. Caruso-Davis MK, Guillot TS, Podichetty VK, Mashtalir N, Dhurandhar NV, Dubuisson O, Yu Y, Greenway FL (2011) Efficacy of low-level laser therapy for body contouring and spot fat reduction. Obes Surg 21(6):722–729

    Article  PubMed  PubMed Central  Google Scholar 

  11. Elnaghy AM, Murray PE, Bradley P, Marchesan M, Namerow KN, Badr AE, El-Hawary YM, Badria FA (2013) Effects of low intensity laser irradiation phototherapy on dental pulp constructs. World J Stomatol 2(1):12–17

    Article  Google Scholar 

  12. Zaccara IM, Ginani F, Mota-Filho HG, Henriques ACG, CAGo B (2015) Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci 30(9):2259–2264

    Article  PubMed  Google Scholar 

  13. Ginani F, Soares DM, de Oliveira Rocha HA, de Souza LB, Barboza CAG (2018) Low-level laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous teeth. Lasers Med Sci 33(1):95–102

    Article  PubMed  Google Scholar 

  14. Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts†an in vitro study. Lasers Med Sci 27(2):423–430

    Article  PubMed  Google Scholar 

  15. Theocharidou A, Bakopoulou A, Kontonasaki E, Papachristou E, Hadjichristou C, Bousnaki M, Theodorou G, Papadopoulou L, Kantiranis N, Paraskevopoulos K (2017) Odontogenic differentiation and biomineralization potential of dental pulp stem cells inside mg-based bioceramic scaffolds under low-level laser treatment. Lasers Med Sci 32(1):201–210

    Article  PubMed  Google Scholar 

  16. Arany PR, Cho A, Hunt TD, Sidhu G, Shin K, Hahm E, Huang GX, Weaver J, Chen AC-H, Padwa BL (2014) Photoactivation of endogenous latent transforming growth factor β1 directs dental stem cell differentiation for regeneration. Sci Transl Med 6(238):238ra269–238ra269

    Article  CAS  Google Scholar 

  17. de Oliveira TS, Serra AJ, Manchini MT, Bassaneze V, Krieger JE, de Carvalho PTC, Antunes DE, Bocalini DS, PJF T, Silva JA (2015) Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency. Lasers Med Sci 30(1):217–223

    Article  PubMed  Google Scholar 

  18. Ginani F, Soares DM, CAGo B (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 30(8):2189–2194

    Article  PubMed  Google Scholar 

  19. Marques MM, Diniz IMA, de Cara SPHM, Pedroni ACF, Abe GL, D'Almeida-Couto RS, Lima PLV, Tedesco TK, Moreira MS (2016) Photobiomodulation of dental derived mesenchymal stem cells: a systematic review. Photomed Laser Surg 34(11):500–508

    Article  PubMed  Google Scholar 

  20. Sloan AJ, Shelton RM, Hann AC, Moxham BJ, Smith AJ (1998) An in vitro approach for the study of dentinogenesis by organ culture of the dentine-pulp complex from rat incisor teeth. Arch Oral Biol 43(6):421–430

    Article  CAS  PubMed  Google Scholar 

  21. Murray PE, Lumley PJ, Ross HF, Smith AJ (2000) Tooth slice organ culture for cytotoxicity assessment of dental materials. Biomater 21(16):1711–1721

    Article  CAS  Google Scholar 

  22. Gonҫalves SB, Dong Z, Bramante CM, Holland GR, Smith AJ, Nor JE (2007) Tooth slice-based models for the study of human dental pulp angiogenesis. J Endod 33(7):811–814

    Article  Google Scholar 

  23. Ateş GB, Can AA, Gülsoy M (2017) Investigation of photobiomodulation potentiality by 635 and 809 nm lasers on human osteoblasts. Lasers Med Sci 32(3):591–599

    Article  Google Scholar 

  24. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. AnalytBiochem 162(1):156–159

    CAS  Google Scholar 

  25. Kim SG (2017) Biological molecules for the regeneration of the pulp-dentin complex. Dent Clin N Am 61(1):127–141

    Article  PubMed  Google Scholar 

  26. Schindl A, Heinze G, Schindl M, Pernerstorfer-Schon H, Schindl L (2002) Systemic effects of low-intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy. Microvasc Res 64(2):240–246

    Article  PubMed  Google Scholar 

  27. Boskey AL (1991) The role of extracellular matrix components in dentin mineralization. Crit Rev Oral Biol Med 2(3):369–387

    Article  CAS  PubMed  Google Scholar 

  28. Butler WT (1998) Dentin matrix proteins. Eur J Oral Sci 106(Suppl 1):204–210

    Article  CAS  PubMed  Google Scholar 

  29. Almushayt A, Narayanan K, Zaki AE, George A (2006) Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther 13(7):611–620

    Article  CAS  PubMed  Google Scholar 

  30. Be'gue-Kirn C, Krebsbach PH, Bartlett JD, Butler WT (1998) Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin, tooth-specific molecules that are distinctively expressed during murine dental differentiation. Eur J Oral Sc 106:963–970

    Article  CAS  Google Scholar 

  31. Suzuki S, Sreenath T, Haruyama N, Honeycutt C, Terse A, Cho A, Kohler T, Müller R, Goldberg M, Kulkarni AB (2009) Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization. Matrix Biol 28(4):221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hwang YC, Hwang IN, Oh WM, Park JC, Lee DS, Son HH (2008) Influence of TGF-beta1 on the expression of BSP, DSP, TGF-beta1 receptor I and Smad proteins during reparative dentinogenesis. J Mol Histol 39(2):153–160

    Article  CAS  PubMed  Google Scholar 

  33. Gerwins P, Skoldenberg E, Claesson-Welsh L (2000) Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit Rev Oncol Hematol 34(3):185–194

    Article  CAS  PubMed  Google Scholar 

  34. Wu J-Y, Chen C-H, Yeh L-Y, Yeh M-L, Ting C-C, Wang Y-H (2013) Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate. Int J Oral Sci 5(2):85–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. CAGo B, Ginani F, Soares DM, Henriques CG, Freitas RA (2014) Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells. Einstein (Sao Paulo) 12(1):75–81

    Article  Google Scholar 

  36. Godoy BM, Arana-Chavez VE, Nunez SC, MSe R (2007) Effects of low-power red laser on dentine-pulp interface after cavity preparation. An ultrastructural study. Arch Oral Biol 52(9):899–903

    Article  CAS  PubMed  Google Scholar 

  37. Marques NCT, Neto NL, de Oliveira Rodini C, Fernandes AP, Sakai VT, Machado MAAM, Oliveira TM (2015) Low-level laser therapy as an alternative for pulpotomy in human primary teeth. Lasers Med Sci 30(7):1815–1822

    Article  PubMed  Google Scholar 

  38. Pereira LO, Longo JPF, Azevedo RB (2012) Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch Oral Biol 57(8):1079–1085

    Article  PubMed  Google Scholar 

  39. Pacheco PS, de Oliveira FA, Oliveira RC, ACP S’A, de Rezende MLR, Greghi SoLA, Damante CA (2013) Laser phototherapy at high energy densities do not stimulate pre-osteoblast growth and differentiation. Photomed Laser Surg 31(5):225–229

    Article  CAS  PubMed  Google Scholar 

  40. Bidar M, Moushekhian S, Gharechahi M, Talati A, Ahrari F, Bojarpour M (2016) The effect of low level laser therapy on direct pulp capping in dogs. Lasers Med Sci 7(3):177

    Article  Google Scholar 

  41. Tran-Hung L, Laurent P, Camps J, About I (2008) Quantification of angiogenic growth factors released by human dental cells after injury. Arch Oral Biol 53(1):9–13

    Article  CAS  PubMed  Google Scholar 

  42. Renno ACM, McDonnell PA, Parizotto NA, Laakso EL (2007) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25(4):275–280

    Article  CAS  PubMed  Google Scholar 

  43. Milward MR, Hadis MA, Cooper PR, Gorecki P, Carroll JD, Palin WM Biomodulatory effects of laser irradiation on dental pulp cells in vitro. In: Proc of SPIE Vol, 2015. pp 930908–930901

  44. Bouvet-Gerbettaz S, Merigo E, Rocca J-P, Carle GF, Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 41(4):291–297

    Article  PubMed  Google Scholar 

  45. MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT (1997) Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4 dentin phosphoprotein DNA sequence determination. J Biol Chem 272(2):835–842

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the assistance of the tissue engineering lab team at the faculty of dentistry, Alexandria University and the molecular therapeutics lab team at the faculty of science, Alexandria University for their valuable assistance in this work.

Funding

No external funding sources to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisham El Nawam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures of this study were done in accordance with the Ethics Research Committee, Faculty of Dentistry, Alexandria University (IRB NO: 00010556–IORG: 0008839) and in accordance with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all patients.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Nawam, H., El Backly, R., Zaky, A. et al. Low-level laser therapy affects dentinogenesis and angiogenesis of in vitro 3D cultures of dentin-pulp complex. Lasers Med Sci 34, 1689–1698 (2019). https://doi.org/10.1007/s10103-019-02804-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02804-6

Keywords

Navigation