Skip to main content

Advertisement

Log in

Comparative study of photodynamic activity of methylene blue in the presence of salicylic acid and curcumin phenolic compounds on human breast cancer

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Curcumin and salicylic acid are both phenolic compounds and they can both affect cancer treatment efficacy. In this study, the effects of methylene blue-curcumin (CU-MB) and methylene blue-salicylic acid (SA-MB) ion pair complexes on MDA-MB-231 human breast cancer cells are studied. According to the thermodynamic parameters, the stability of curcumin and salicylic acid complexes ion pair complexes was compared. The free energy of ion pair interactions was calculated based on binding constants. A comparison of the free energies of the complexes (CU-MB: ∆G°b1 = − 21.11 kJ/mol and ∆G°b2 = − 8.37 kJ/mol, SA-MB: ∆G°b1 = − 12.92 kJ/mol and ∆G°b2 = − 9.02 kJ/mol) indicates that the interaction of methylene blue in first binding interaction with curcumin is greater than that of methylene blue with salicylic acid. Electrostatic interactions are the main forces in the binding of both compounds to methylene blue. All forces are inter-molecular physical interactions. The results of cellular experiments show that ion pairing has enhanced the reduction of cell viability. By increasing molecular stability and prevention of dimerization of methylene blue, the cell killing potential of methylene blue increases and it subsequently causes enhancement of photodynamic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sarveiya V, Templeton JF, Benson H a E (2004) Ion-pairs of ibuprofen: increased membrane diffusion. J Pharm Pharmacol 56:717–724. https://doi.org/10.1211/0022357023448

    Article  PubMed  CAS  Google Scholar 

  2. Sarveiya V, Templeton JF, Benson HAE (2005) Effect of lipophilic counter-ions on membrane diffusion of benzydamine. Eur J Pharm Sci 26:39–46. https://doi.org/10.1016/j.ejps.2005.04.013

    Article  PubMed  CAS  Google Scholar 

  3. Song IS, Choi MK, Shim WS, Shim CK (2013) Transport of organic cationic drugs: effect of ion-pair formation with bile salts on the biliary excretion and pharmacokinetics. Pharmacol Ther 138:142–154. https://doi.org/10.1016/j.pharmthera.2013.01.006

    Article  PubMed  CAS  Google Scholar 

  4. Elshaer A, Hanson P, Mohammed AR (2014) A novel concentration dependent amino acid ion pair strategy to mediate drug permeation using indomethacin as a model insoluble drug. Eur J Pharm Sci 62:124–131. https://doi.org/10.1016/j.ejps.2014.05.022

    Article  PubMed  CAS  Google Scholar 

  5. Wang M, Fang L, Ren C, Li T (2008) Effect of ion-pairing and enhancers on scutellarin skin permeability. J Pharm Pharmacol 60:429–435. https://doi.org/10.1211/jpp.60.4.0004

    Article  PubMed  CAS  Google Scholar 

  6. Nam SH, Xu YJ, Nam H et al (2011) Ion pairs of risedronate for transdermal delivery and enhanced permeation rate on hairless mouse skin. Int J Pharm 419:114–120. https://doi.org/10.1016/j.ijpharm.2011.07.027

    Article  PubMed  CAS  Google Scholar 

  7. Lozoya-Agullo I, González-Álvarez I, González-Álvarez M et al (2016) Development of an ion-pair to improve the colon permeability of a low permeability drug: atenolol. Eur J Pharm Sci 93:334–340. https://doi.org/10.1016/j.ejps.2016.08.035

    Article  PubMed  CAS  Google Scholar 

  8. Hui M, Quan P, Yang Y, Fang L (2014) The effect of ion-pair formation combined with penetration enhancers on the skin permeation of loxoprofen. Drug Deliv 7544:1–8. https://doi.org/10.3109/10717544.2014.981768

    Article  CAS  Google Scholar 

  9. Griesser J, Hetényi G, Moser M et al (2017) Hydrophobic ion pairing: key to highly payloaded self-emulsifying peptide drug delivery systems. Int J Pharm 520:267–274. https://doi.org/10.1016/j.ijpharm.2017.02.019

    Article  PubMed  CAS  Google Scholar 

  10. Jiang Y, Fang L, Niu X et al (2008) The effect of ion pairing on the skin permeation of amlodipine. Pharmazie 63:356–360. https://doi.org/10.1691/ph.2008.7302

    Article  PubMed  CAS  Google Scholar 

  11. Fini A, Bassini G, Monastero A, Cavallari C (2012) Diclofenac salts, VIII. Effect of the counterions on the permeation through porcine membrane from aqueous saturated solutions. Pharmaceutics 4:413–429. https://doi.org/10.3390/pharmaceutics4030413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Suresh P, Paul S (2011) Ion-paired drug delivery: an avenue for bioavailability improvement. Sierra Leone J Biomed Res 3:70–76. https://doi.org/10.4314/sljbr.v3i2.71806

    Article  Google Scholar 

  13. Megwa SA, Cross SE, Whitehouse MW et al (2000) Effect of ion pairing with alkylamines on the in-vitro dermal penetration and local tissue disposition of salicylates. J Pharm Pharmacol 52:929–940. https://doi.org/10.1211/0022357001774813

    Article  PubMed  CAS  Google Scholar 

  14. Zhang JY, Fang L, Tan Z et al (2009) Influence of ion-pairing and chemical enhancers on the transdermal delivery of meloxicam Enhanced penetration of meloxicam. Drug Dev Ind Pharm 35:663–670. https://doi.org/10.1080/03639040802578111

    Article  PubMed  CAS  Google Scholar 

  15. Neubert R (1989) Ion pair transport across membranes. Pharm Res 6:743–747

    Article  PubMed  CAS  Google Scholar 

  16. Megwa SA, Cross SE, Benson HA, Roberts MS (2000) Ion-pair formation as a strategy to enhance topical delivery of salicylic acid. J Pharm Pharmacol 52:919–928

    Article  PubMed  CAS  Google Scholar 

  17. Tardivo JP, Del Giglio A, De Oliveira CS et al (2005) Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn Photodyn Ther 2:175–191. https://doi.org/10.1016/S1572-1000(05)00097-9

    Article  CAS  Google Scholar 

  18. Vejselova D, Kutlu HM (2015) Inhibitory effects of salicylic acid on A549 human lung adenocarcinoma cell viability. Turkish J Biol 39:1–5. https://doi.org/10.3906/biy-1401-7

    Article  CAS  Google Scholar 

  19. Khorsandi K, Hosseinzadeh R, Fateh M (2015) Curcumin intercalated layered double hydroxide nanohybrid as a potential drug delivery system for effective photodynamic therapy in human breast cancer cells. RSC Adv 5. https://doi.org/10.1039/c5ra15888e

  20. Hosseinzadeh R, Khorsandi K (2017) Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell. Photodiagn Photodyn Ther 18:284–294. https://doi.org/10.1016/j.pdpdt.2017.03.005

    Article  CAS  Google Scholar 

  21. Hosseinzadeh R, Khorsandi K, Jahanshiri M (2017) Combination photodynamic therapy of human breast cancer using salicylic acid and methylene blue. Spectrochim Acta - Part A Mol Biomol Spectrosc 184:198–203. https://doi.org/10.1016/j.saa.2017.05.008

    Article  CAS  Google Scholar 

  22. Malvezzi A, do Amaral AT (2010) Ion pair stabilization effects on a series of procaine structural analogs. Eur J Pharm Sci 41:631–635. https://doi.org/10.1016/j.ejps.2010.09.003

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge all the people who helped us do this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Hosseinzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All of ethics regrading this work were provided and considered and authors approve this matter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorsandi, K., Chamani, E., Hosseinzadeh, G. et al. Comparative study of photodynamic activity of methylene blue in the presence of salicylic acid and curcumin phenolic compounds on human breast cancer. Lasers Med Sci 34, 239–246 (2019). https://doi.org/10.1007/s10103-018-2571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2571-0

Keywords

Navigation