Skip to main content
Log in

Effects of curcumin-/boron-based compound complexation on antioxidant and antiproliferation activity

  • Article
  • Published:
Applied Biological Chemistry Submit manuscript

Abstract

Simple and reproducible formulation strategies are needed to improve the bio-availability of curcumin. In this study, curcumin was successfully complexed with two boron-based compounds: 2-aminoethyl diphenyl borate (DPBA) and bortezomib (BTZ; Velcade®). In reverse-phase high-performance liquid chromatography, DPBA/curcumin complexes (DPBA/cur) showed delayed elution times compared to those of free curcumin. The UV–visible absorbance peak of DPBA/cur and BTZ and curcumin complexes (BTZ/cur) appeared redshifted. DPBA complexation has a negligible effect on the antioxidant and antiproliferation properties of curcumin for two types of cancer cells: MCF-7 and A549. Thus, curcumin complexation with boron-based compounds could be a method to enhance in vivo stability without loss of bioactivity (i.e., antioxidant and antiproliferation effects).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kuttan R, Bhanumathy P, Nirmala K, George MC (1985) Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett 29(2):197–202

    Article  CAS  PubMed  Google Scholar 

  2. Bar-Sela G, Epelbaum R, Schaffer M (2010) Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr Med Chem 17(3):190–197

    Article  CAS  PubMed  Google Scholar 

  3. Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE (2014) Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35(10):3365–3383

    Article  CAS  PubMed  Google Scholar 

  4. Sun DM, Zhuang XY, Grizzle W, Miller D, Zhang HG (2011) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Cancer Res 71

  5. Hasan M, Belhaj N, Benachour H, Barberi-Heyob M, Kahn CJF, Jabbari E, Linder M, Arab-Tehrany E (2014) Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Int J Pharm 461(1–2):519–528

    Article  CAS  PubMed  Google Scholar 

  6. Yallapu MM, Jaggi M, Chauhan SC (2012) Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today 17(1–2):71–80

    Article  CAS  PubMed  Google Scholar 

  7. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB (2008) Biological activities of curcumin and its analogues (Congeners) made by man and mother nature. Biochem Pharmacol 76(11):1590–1611

    Article  CAS  PubMed  Google Scholar 

  8. Liu YM, Lee K (2009) Modifications of the curcumin method enabling precise and accurate measurement of seawater boron concentration. Mar Chem 115(1–2):110–117

    Article  CAS  Google Scholar 

  9. Sah RN, Brown PH (1997) Boron determination—a review of analytical methods. Microchem J 56(3):285–304

    Article  CAS  Google Scholar 

  10. Wimmer MA, Goldbach HE (1999) A miniaturized curcumin method for the determination of boron in solutions and biological samples. J Plant Nutr Soil Sc 162(1):15–18

    Article  CAS  Google Scholar 

  11. Mair JW Jr, Day HG (1972) Curcumin method for spectrophotometric determination of boron extracted from radiofrequency ashed animal tissues using 2-ethyl-1,3-hexanediol. Anal Chem 44(12):2015–2017

    Article  CAS  PubMed  Google Scholar 

  12. Baker SJ, Ding CZ, Akama T, Zhang YK, Hernandez V, Xia Y (2009) Therapeutic potential of boron-containing compounds. Future Med Chem 1(7):1275–1288

    Article  CAS  PubMed  Google Scholar 

  13. Hunter P (2009) Not boring at all Boron is the new carbon in the quest for novel drug candidates. EMBO Rep 10(2):125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kang YY, Jung H, Yu G, Chong Y, Mok H (2016) Complexation of curcumin with 2-aminoethyl diphenyl borate and implications for spatiotemporal fluorescence monitoring. Int J Pharm 515(1–2):669–676

    Article  CAS  PubMed  Google Scholar 

  15. Medel S, Syrova Z, Kovacik L, Hrdy J, Hornacek M, Jager E, Hruby M, Lund R, Cmarko D, Stepanek P, Raska I, Nyström B (2017) Curcumin-bortezomib loaded polymeric nanoparticles for synergistic cancer therapy. Eur Polym J 93:116–131

    Article  CAS  Google Scholar 

  16. Aghajanian C, Soignet S, Dizon DS, Pien CS, Adams J, Elliott PJ, Sabbatini P, Miller V, Hensley ML, Pezzulli S, Canales C, Daud A, Spriggs DR (2002) A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res 8(8):2505–2511

    CAS  PubMed  Google Scholar 

  17. Kouroukis TC, Baldassarre FG, Haynes AE, Imrie K, Reece DE, Cheung MC (2014) Bortezomib in multiple myeloma: systematic review and clinical considerations. Curr Oncol 4:e573–e603

    Article  Google Scholar 

  18. Park J, Ayyappan V, Bae EK, Lee C, Kim BS, Kim BK, Lee YY, Ahn KS, Yoon SS (2008) Curcumin in combination with bortezomib synergistically induced apoptosis in human multiple myeloma U266 cells. Mol Oncol 2(4):317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mujtaba T, Kanwar J, Wan SB, Chan TH, Dou QP (2012) Sensitizing human multiple myeloma cells to the proteasome inhibitor bortezomib by novel curcumin analogs. Int J Mol Med 29(1):102–106

    CAS  PubMed  Google Scholar 

  20. Alberti D, Protti N, Franck M, Stefania R, Bortolussi S, Altieri S, Deagostino A, Aime S, Geninatti Crich S (2017) Theranostic nanoparticles loaded with imaging probes and rubrocurcumin for combined cancer therapy by folate receptor targeting. Chem Med Chem 12(7):502–509

    Article  CAS  PubMed  Google Scholar 

  21. Donaldson EM (1981) Spectrophotometric determination of boron in iron and steel with curcumin after separation by 2-ethyl-1,3-hexanediol-chloroform extraction. Talanta 28(11):825–831

    Article  CAS  PubMed  Google Scholar 

  22. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free-radical method to evaluate antioxidant activity. Food Sci Technol-Leb 28(1):25–30

    Article  CAS  Google Scholar 

  23. Chen A, Xu J, Johnson AC (2006) Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 25(2):278–287

    Article  CAS  PubMed  Google Scholar 

  24. Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G (2002) Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett 512(1–3):334–340

    Article  CAS  PubMed  Google Scholar 

  25. Qiu X, Du YH, Lou B, Zuo YL, Shao WY, Huo YP, Huang JN, Yu YJ, Zhou BH, Du J, Fu H, Bu XZ (2010) Synthesis and identification of new 4-Arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-kappa b signaling pathway. J Med Chem 53(23):8260–8273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Agrawal DK, Mishra PK (2010) Curcumin and its analogues: potential anticancer agents. Med Res Rev 30(5):818–860

    CAS  PubMed  Google Scholar 

  27. Simon A, Allais DP, Duroux JL, Basly JP, Durand-Fontanier S, Delage C (1998) Inhibitory effect of curcuminoids on MCF-7 cell proliferation and structure-activity relationships. Cancer Lett 129(1):111–116

    Article  CAS  PubMed  Google Scholar 

  28. Radhakrishna Pillai G, Srivastava AS, Hassanein TI, Chauhan DP, Carrier E (2004) Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett 208(2):163–170

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agri-Bio Industry Technology Development Program (316028-3), Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries (IPET), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyejung Mok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.Y., Kang, Y.Y., Kim, E.J. et al. Effects of curcumin-/boron-based compound complexation on antioxidant and antiproliferation activity. Appl Biol Chem 61, 403–408 (2018). https://doi.org/10.1007/s13765-018-0374-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-018-0374-4

Keywords

Navigation