Skip to main content

Advertisement

Log in

Evaluation of the therapeutic effects of led (λ627 ± 10 nm) on the initial phase of ankle sprain treatment: a randomised placebo-controlled clinical trial

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Various therapies for the treatment of sprains have emerged as advances occur in biomedical engineering and photobiology. Therapy with coherent and non-coherent light is a treatment modality for various musculoskeletal injuries. The main certified phototherapy benefits are the reduction of nociceptive processes and the modulation of the inflammatory process, among others. The objective of this study was to analyse the changes caused by the use of light-emitting diodes (LED) (λ627 ± 10 nm) with an energy density of 10 J/cm2 in 40 subjects divided into two groups (20 placebo and 20 LED). All of the volunteers had acute ankle sprains by inversion of grade II treated with the PRICE (protection, rest, ice, compression and elevation) technique and were treated for 6 days with LED therapy and LED therapy turned off (placebo). Pain assessment was performed on the 1st, 3rd and 6th days using the visual analogue scale (VAS) of pain, the McGill Pain Questionnaire and volumetry. The group treated with LED showed statistically decreased pain compared to the placebo group in both the VAS (85.79 vs 55.73%) and McGill questionnaire (83.33 vs 52.52%). The reduction of oedema in the LED group on the 3rd and 6th days after therapy was statistically superior to that in the placebo (p < 0.0001). Based on the results of this study, treatment with LED, using the tested dose, is effective for pain and oedema in the initial phase of ankle sprains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barbanera M, Araujo RC, Fernandes TD, Hernandez AJ (2012) Evaluation of the passive resistive torque in female athletes with ankle sprain. Rev Bras Med Esporte 18(2):112–116. https://doi.org/10.1590/S1517-86922012000200010

    Article  Google Scholar 

  2. Caputo AM, Lee JY, Spritzer CE, Easley ME, DeOrio JK, Nunley JA, DeFrate LE (2009) The in vivo kinematics of the tibiotalar joint after lateral ankle instability. Am J Sports Med 37(11):2241–2248. https://doi.org/10.1177/0363546509337578

    Article  PubMed  PubMed Central  Google Scholar 

  3. Petersen W, Rembitzki IV, Koppenburg AG, Ellermann A, Liebau C, Brüggemann GP, Best R (2013) Treatment of acute ankle ligament injuries: a systematic review. Arch Orthop Trauma Surg 133(8):1129–1141. https://doi.org/10.1007/s00402-013-1742-5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Janssen KW, Van Mechelen W, Verhagen EA (2011) Ankles back in randomized controlled trial (ABrCt): braces versus neuromuscular exercises for the secondary prevention of ankle sprains. Design of a randomised controlled trial. BMC Musculoskelet Disord 12:2–10. https://doi.org/10.1186/1471-2474-12-210

    Article  Google Scholar 

  5. Doherty C, Bleakley C, Delahunt E, Holden S (2017) Treatment and prevention of acute and recurrent ankle sprain: an overview of systemic reviews with meta-analysis. Br J Sports Med 51:71–71. https://doi.org/10.1136/bjsports-2016-097339

    Article  Google Scholar 

  6. Stergioulas A (2004) Low-level laser treatment can reduce edema in second degree ankle sprains. J Clin Laser Med Sur 22(2):52–57. https://doi.org/10.1089/104454704774076181

    Article  Google Scholar 

  7. Fukuda VO, Fukuda FY, Guimarães M, Shiwa S, De Lima BDC, Martins RABL, Casarotto RA, Alfredo PP, Bjordal JM, Fucs PMMB (2011) Short-term efficacy of low-level laser therapy in patients with knee osteoarthritis: a randomized placebo-controlled, double-blind clinical trial. Rev Bras Ortop 46(5):526–533. https://doi.org/10.1590/S0102-36162011000500008

    Article  PubMed  Google Scholar 

  8. Albertini R, Villaverde AB, Aimbire F, Salgado MA, Bjordal JM, Alves LP, Munin E, Costa MS (2007) Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw edema. J Photochem Photobiol B 89(1):50–55. https://doi.org/10.1016/j.jphotobiol.2007.08.005

    Article  PubMed  CAS  Google Scholar 

  9. Casalechi HL, Nicolau RA, Casalechi VL, Silveira L Jr, De Paula AM, Pacheco MT (2009) The effects of low-level light emitting diode on the repair process of Achilles tendon therapy in rats. Lasers Med Sci 24(4):659–665. https://doi.org/10.1007/s10103-008-0607-6

    Article  PubMed  Google Scholar 

  10. Haslerud S, Magnussen LH, Joensen J, Lopes-Martins RA, Bjordal JM (2015) The efficacy of low-level laser therapy for shoulder tendinopathy: a systematic review and meta-analysis of randomized controlled trials. Physiother Res Int 20(2):108–125. https://doi.org/10.1002/pri.1606

    Article  PubMed  Google Scholar 

  11. Barretto SR, de Melo GC, dos Santos JC, de Oliveira MG, Pereira-Filho RN, Ribeiro MA, Lima-Verde IB, Quintans Júnior LJ, de Albuquerque-Júnior RL, Bonjardim LR (2013) Evaluation of anti-nociceptive and anti-inflammatory activity of low-level laser therapy on temporomandibular joint inflammation in rodents. J Photochem and Photobiol B 129:135–142. https://doi.org/10.1016/j.jphotobiol.2013.10.002

    Article  CAS  Google Scholar 

  12. Leal-Junior EC, de Almeida P, Tomazoni SS, de Carvalho PT, Lopes-Martins RÁ, Frigo L, Joensen J, Johnson MI, Bjordal JM (2014) Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression. PLoS One 9(3):e89453. https://doi.org/10.1371/journal.pone.0089453

    Article  PubMed  PubMed Central  Google Scholar 

  13. Costa DR, Costa DR, Pessoa DR, Masulo LJ, Arisawa ES, Nicolau RA (2017) Effect of LED therapy on temporomandibular disorder: a case study. Sci Med 27(2):258–272. https://doi.org/10.15448/1980-6108.2017.2.25872

    Article  Google Scholar 

  14. Schaffer M, Bonel H, Sroka R, Schaffer PM, Busch M, Reiser M, Dühmke E (2000) Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary findings on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI). J Photochem Photobiol B 54(1):55–60. https://doi.org/10.1016/S1011-1344(99)00155-4

    Article  PubMed  CAS  Google Scholar 

  15. Ferreira DM, Zângaro RA, Vilaverde AB, Cury Y, Frigo L, Picolo GM, Longo I, Barbosa DG (2005) Analgesic effect of He-Ne (632,8nm) low-level laser therapy on acute inflammatory pain. Photomed Laser Surg 23(2):177–181. https://doi.org/10.1089/pho.2005.23.177

    Article  PubMed  CAS  Google Scholar 

  16. Silveira PCL, Silva LA, Tuon T, Freitas TP, Streck EL, Pinho RA (2009) Effects of low-level laser therapy on epidermal oxidative response induced by wound healing. Rev Bras Fisioter 13(4):281–287. https://doi.org/10.1590/S1413-35552009005000040

    Article  Google Scholar 

  17. Takezaki S, Omi T, Sato S, Kawana S (2006) Light-emitting diode phototherapy at 630±3 nm increases local levels of skin-homing T-cells in human subjects. J Nippon Med Sch 73(2):75–81. https://doi.org/10.1272/jnms.73.75

    Article  PubMed  CAS  Google Scholar 

  18. Diamantino AG, Nicolau RA, Costa DR, de Barros Almeida AP, de Miranda Mato DX, de Oliveira MA, do Espírito Santo AM (2017) Effect of non-coherent infrared light (LED, λ945 ± 20 nm) on bone repair in diabetic rats-morphometric and spectral analyses. Lasers Med Sci 32(5):1041–1049. https://doi.org/10.1007/s10103-017-2205-y

    Article  PubMed  Google Scholar 

  19. Ruaro JA, Fréz AR, Ruaro MB, Nicolau RA (2014) Low-level laser therapy to treat fibromyalgia. Lasers Med Sci 29(6):1815–1819. https://doi.org/10.1007/s10103-014-1566-8

    Article  PubMed  CAS  Google Scholar 

  20. Coradini JG, Mattjie TF, Bernardino GR, Peretti AL, Kakihata CMM, Errero TK, Escher AR, Bertolini GRF (2013) Comparison of low level laser, ultrasonic therapy and association in joint pain in Wistar rats. Rev Bras Reumatol 54(1):7–12. https://doi.org/10.1016/j.rbr.2014.01.001

    Article  Google Scholar 

  21. Muñoz ISS, Hauck LA, Nicolau RA, Kelencz CA, Maciel TS, de Paula Junior AR (2013) Effect of laser vs LED in the near infrared region on the skeletal muscle activity—clinical study. Rev Bras Eng Bioméd 29(3):262–268. https://doi.org/10.4322/rbeb.2013.023

    Article  Google Scholar 

  22. Trelles MA, Allones I, Mayo E (2006) Er. YAG laser ablation of Plantar verrucae with red LED therapy-assisted healing. Photomed Laser Surg 24(4):494–498. https://doi.org/10.1089/pho.2006.24.494

    Article  PubMed  Google Scholar 

  23. Dos Reis FA, da Silva BA, Laraia EM, de Melo RM, Silva PH, Leal-Junior EC, de Carvalho PT (2014) Effects of pre- or post-exercise low-level laser therapy (830 nm) on skeletal muscle fatigue and biochemical markers of recovery in humans: double-blind placebo-controlled trial. Photomed Laser Surg 32(2):106–112. https://doi.org/10.1089/pho.2013.3617

    Article  PubMed  CAS  Google Scholar 

  24. Frangez I, Cankar K, Frangez HB, Smrke DM (2017) The effect of LED on blood microcirculation during chronic wound healing in diabetic and non-diabetic patients a prospective, double-blind randomized study. Lasers Med Sci 32(4):887–894. https://doi.org/10.1007/s10103-017-2189-7

    Article  PubMed  Google Scholar 

  25. Vinck E, Coorevits P, Cagnie B, De Muynck M, Vanderstraeten G, Cambier D (2005) Evidence of changes in sural nerve conduction mediated by light emitting diode irradiation. Lasers Med Sci 20(1):35–40. https://doi.org/10.1007/s10103-005-0333-2

    Article  PubMed  Google Scholar 

  26. Chow R, Armati P, Laakso EL, Bjordal JM, Baxter GD (2011) Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomed Laser Surg 29(6):365–381. https://doi.org/10.1089/phone.2010.2928

    Article  PubMed  Google Scholar 

  27. Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3) doi:https://doi.org/10.1109/JSTQE.2016.2561201

  28. Paolillo FR, Lins EC, Corazza AV, Kurachi C, Bagnato VS (2013) Thermography applied during exercises with or without infrared light-emitting diode irradiation: individual and comparative analysis. Photomed Laser Surg 31(7):349–355. https://doi.org/10.1089/pho.2013.3505

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang X, Tian F, Soni S, Gonzalez-Lima F, Liu H (2016) Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep 6:30540. https://doi.org/10.1038/srep30540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Torres-Silva R, Lopes-Martins RA, Bjordal JM, Frigo L, Rahouadj R, Arnold G, Leal-Junior EC, Magdalou J, Pallotta R, Marcos RL (2015) The low level laser therapy (LLLT) operating in 660 nm reduce gene expression of inflammatory mediators in the experimental model of collagenase-induced rat tendinitis. Lasers Med Sci 30(7):1985–1990. https://doi.org/10.1007/s10103-014-1676-3

    Article  PubMed  Google Scholar 

  31. Karu TI (2003) Low-power laser therapy. In: Vo-dinh T (ed) Biomedical photonics handbook, 1rd. North Carolina, Taylor and Francis Group, pp 1–48

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fundação Valeparaíbana de Ensino (FVE/UNIVAP) for the financial support. Pessoa D. R. thanks the CAPES/PROSUP for the master’s fellowship. D. R. Costa thanks the CAPES/PROSUP for the PhD fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno de Moraes Prianti.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study. The authors declare that they have no conflict of interest.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moraes Prianti, B., Novello, G.F., de Souza Moreira Prianti, T. et al. Evaluation of the therapeutic effects of led (λ627 ± 10 nm) on the initial phase of ankle sprain treatment: a randomised placebo-controlled clinical trial. Lasers Med Sci 33, 1031–1038 (2018). https://doi.org/10.1007/s10103-018-2460-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2460-6

Keywords

Navigation