Skip to main content
Log in

Effects of low-level laser therapy (LLLT 808 nm) on lower limb spastic muscle activity in chronic stroke patients

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

A cerebrovascular accident (CVA) may affect basic motor functions, including spasticity that may be present in the upper extremity and/or the lower extremity, post-stroke. Spasticity causes pain, muscle force reduction, and decreases the time to onset of muscle fatigue. Several therapeutic resources have been employed to treat CVA to promote functional recovery. The clinical use of low-level laser therapy (LLLT) for rehabilitation of muscular disorders has provided better muscle responses. Thus, the aim of this study was to evaluate the effect of the application of LLLT in spastic muscles in patients with spasticity post-CVA. A double-blind clinical trial was conducted with 15 volunteer stroke patients who presented with post-stroke spasticity. Both males and females were treated; the average age was 51.5 ± 11.8 years old; the participants entered the study ranging from 11 to 48 months post-stroke onset. The patients participated in three consecutive phases (control, placebo, and real LLLT), in which all tests of isometric endurance of their hemiparetic lower limb were performed. LLLT (diode laser, 100 mW 808 nm, beam spot area 0.0314 cm2, 127.39 J/cm2/point, 40 s) was applied before isometric endurance. After the real LLLT intervention, we observed significant reduction in the visual analogue scale for pain intensity (p = 0.0038), increased time to onset of muscle fatigue (p = 0.0063), and increased torque peak (p = 0.0076), but no significant change in the root mean square (RMS) value (electric signal in the motor unit during contraction, as obtained with surface electromyography). Our results suggest that the application of LLLT may contribute to increased recruitment of muscle fibers and, hence, to increase the onset time of the spastic muscle fatigue, reducing pain intensity in stroke patients with spasticity, as has been observed in healthy subjects and athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Donahue J, Sumer S, Wintermark M (2014) Assessment of collateral flow in patients with cerebrovascular disorders. J Neuroradiol 41(4):234–242. doi:10.1016/j.neurad.2013.11.002

    Article  PubMed  Google Scholar 

  2. Friedman JI, Tang CY, de Haas HJ, Changchien L, Goliasch G, Dabas P, Wang V, Fayad ZA, Fuster V, Narula J (2014) Brain imaging changes associated with risk factors for cardiovascular and cerebrovascular disease in asymptomatic patients. J Am Coll Cardiol Img 7(10):1039–1053. doi:10.1016/j.jcmg.2014.06.014

    Article  Google Scholar 

  3. Wang B, Jia M, Jia S, Wan J, Zhou X, Luo Z, Zhou Y, Zhang J (2014) Influencing factors for early acute cerebrovascular accidents in patients with stroke history following off-pump coronary artery bypass grafting. Heart Lung Circ 23(6):560–565. doi:10.1016/j.hlc.2013.11.017

    Article  CAS  PubMed  Google Scholar 

  4. Barrett RS, Lichtwark GA (2010) Gross muscle morphology and structure in spastic cerebral palsy: a systematic review. Dev Med Child Neurol 52(9):794–804. doi:10.1111/j.1469-8749.2010.03686.x

    Article  PubMed  Google Scholar 

  5. Barber L, Barrett R, Lichtwark G (2011) Passive muscle mechanical properties of the medial gastrocnemius in young adults with spastic cerebral palsy. J Biomech 44:2496–2500. doi:10.1016/j.jbiomech.2011.06.008

    Article  PubMed  Google Scholar 

  6. dos Reis MCR, de Andrade EAF, Borges ACL, de Souza DQ, Lima MO (2015) Immediate effects of low-intensity laser (808 nm) on fatigue and strength of spastic muscle. Lasers Med Sci 30(3):1089–96. doi:10.1007/s10103-014-1702-5

    Article  PubMed  Google Scholar 

  7. Teixeira-Salmela LF, Nadeau S, Mcbride I, Olney SJ (2001) Effects of muscle strengthening and physical conditioning training on temporal, kinematic and kinetic variables during gait in chronic stroke survivors. J Rehabil Med 33(2):53–60. doi:10.1080/165019701750098867

    Article  CAS  PubMed  Google Scholar 

  8. Karu TI, Pyatibrat LV, Afanasyeva NI (2005) Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med 36(4):307–314. doi:10.1002/lsm.20148

    Article  PubMed  Google Scholar 

  9. Hawkins D, Abrahamse H (2005) Laboratory methods for evaluating the effect of low level laser therapy (LLLT) in wound healing. Afr J Biomed Res 8(1):1–14. doi:10.4314/ajbr.v8i1.35752

    Google Scholar 

  10. Kujawa J, Zavodnik L, Zavodnik I, Buko V, Lapshyna A, Bryszewska M (2004) Effect of low-intensity (3.75–25 J/cm2) near-infrared (810 nm) laser radiation on red blood cell ATPase activities and membrane structure. J Clin Laser Med Surg 22 (2). doi: 10.1089/104454704774076163

  11. Khalighi HR, Anbari F, Taheri JB, Bakhtiari S, Namazi Z, Pouralibaba F (2010) Effect of low-power laser on treatment of orofacial pain. J Dent Res Dent Clin Dent Prospects 4(3):75–78. doi:10.5681/joddd.2010.019

    PubMed  PubMed Central  Google Scholar 

  12. Bjordal JM, Lopes-Martins RAB, Iversen VV (2006) A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. Br J Sports Med 40(1):76–80. doi:10.1136/bjsm.2005.020842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Lima FM, Vitoretti L, Coelho F, Albertini R, Breithaupt-Faloppa AC, De Lima WT, Aimbire F (2013) Suppressive effect of low-level laser therapy on tracheal hyper responsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion. Lasers Med Sci 28(2):551–564. doi:10.1007/s10103-012-1088-1

    Article  PubMed  Google Scholar 

  14. Lopes-Martins RÁB, Marcos RL, Leonardo PS, Prianti AC Jr, Muscará MN, Aimbire F, Bjordal JM (2006) Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol 101(1):283–288. doi:10.1152/japplphysiol.01318.2005

    Article  PubMed  Google Scholar 

  15. Leal Junior ECPL, Lopes-Martins RÁB, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Bjordal JM (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24(3):425–431. doi:10.1007/s10103-008-0592-9

    Article  PubMed  Google Scholar 

  16. Baroni BM, Junior ECPL, De Marchi T, Lopes AL, Salvador M, Vaz MA (2010) Low-level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol 110(4):789–796. doi:10.1007/s00421-010-1562-z

    Article  PubMed  Google Scholar 

  17. Leal Junior ECP, Lopes-Martins RÁB, Frigo L, De Marchi T, Rossi RP, De Godoi V, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40(8):524–532. doi:10.2519/jospt.2010.3294

    Article  PubMed  Google Scholar 

  18. Ferraresi C, de Sousa MVP, Huang Y, Bagnato VS, Parizotto NA, Hamblin MR (2015) Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice. Lasers Med Sci 30(4):1259–67. doi:10.1007/s10103-015-1723-8

    Article  PubMed  Google Scholar 

  19. Almeida P, Lopes-Martins RA, De Marchi T, Tomazoni SS, Albertini R, Corrêa JC, Rossi RP, Machado GP, da Silva DP, Bjordal JM, Leal Junior EC (2012) Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers Med Sci 27(2):453–8. doi:10.1007/s10103-011-0957-3

    Article  PubMed  Google Scholar 

  20. De Marchi T, Junior ECPL, Bortoli C, Tomazoni SS, Lopes-Martins RÁB, Salvador M (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27(1):231–236. doi:10.1007/s10103-011-0955-5

    Article  PubMed  Google Scholar 

  21. de Brito Vieira WH, Ferraresi C, de Andrade Perez SE, Baldissera V, Parizotto NA (2012) Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers Med Sci 27(2):497–504. doi:10.1007/s10103-011-0984-0

    Article  Google Scholar 

  22. Patrocinio T, Sardim AC, Assis L, Fernandes KR, Rodrigues N, Renno AC (2013) Effect of low-level laser therapy (808 nm) in skeletal muscle after resistance exercise training in rats. Photomed Laser Surg 31(10):492–8. doi:10.1089/pho.2013.3540

    Article  CAS  PubMed  Google Scholar 

  23. Toma RL, Tucci HT, Antunes HKM, Pedroni CR, de Oliveira AS, Buck I, Renno ACM (2013) Effect of 808 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in elderly women. Lasers Med Sci 28(5):1375–1382. doi:10.1007/s10103-012-1246-5

    Article  PubMed  Google Scholar 

  24. Olsson MC, Krüger M, Meyer LH, Ahnlund L, Gransberg L, Linke WA, Larsson L (2006) Fibre type-specific increase in passive muscle tension in spinal cord-injured subjects with spasticity. J Physiol 577(1):339–52. doi:10.1113/jphysiol.2006.116749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baptista J, Martins MD, Pavesi VCS, Bussadori SK, Fernandes KPS, Pinto Júnior DS, Ferrari RAM (2011) Photomedicine and. Laser Surg 29(1):11–17. doi:10.1089/pho.2009.2737

    Article  CAS  Google Scholar 

  26. Vikhlyantsev IM, Podlubnaya ZA (2012) New titin (connectin) isoforms and their function in striated muscles of mammals: facts and suppositions. Biochem Mosc 77(13):1515–35. doi:10.1134/S0006297912130093

    Article  CAS  Google Scholar 

  27. Mesquita-Ferrari RA, Alves AN, Cardoso VO, Artilheiro PP, Bussadori SK, Rocha LA, Nunes FD, Fernandes KPS (2015) Low-level laser irradiation modulates cell viability and creatine kinase activity in C2C12 muscle cells during the differentiation process. Lasers in Medical Science, published online: http://link.springer.com/article/10.1007/s10103-015-1715-8#page-1

  28. Ao D, Sun R, Tong K, Song R (2015) Characterization of stroke- and aging-related changes in the complexity of EMG signals during tracking tasks. Ann Biomed Eng 43(4):990–1002. doi:10.1007/s10439-014-1150-1

    Article  PubMed  Google Scholar 

  29. Muñoz ISS, Hauck LA, Nicolau RA, Kelencz CA, Maciel TDS, Júnior P (2013) Effect of laser vs LED in the near infrared region on the skeletal muscle activity: clinical study. Rev Bras Engenharia Bioméd 29(3):262–268. doi:10.4322/rbeb.2013.023

    Article  Google Scholar 

  30. Metcalfe CW, Naji S, McArthur P (2014) Novel uses for botulinum neurotoxin in upper limb surgery. J Hand Microsurg 7(1):102–103. doi:10.1007/s12593-014-0153-3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brunelli RM, Rodrigues NC, Ribeiro DA, Fernandes K, Magri A, Assis L, Parizotto NA, Cliquet A Jr, Renno ACM, Abreu DCC (2014) The effects of 780-nm low-level laser therapy on muscle healing process after cryolesion. Lasers Med Sci 29:91–6. doi:10.1007/s10103-013-1277-6

    Article  PubMed  Google Scholar 

  32. Tesson C, Koht J, Stevanin G (2015) Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet 134:511–538. doi:10.1007/s00439-015-1536-7

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ferraresi C, de Brito Oliveira T, de Oliveira Zafalon L, de Menezes Reiff RB, Baldissera V, de Andrade Perez SE, Parizotto NA (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26(3):349–358. doi:10.1007/s10103-010-0855-0

    Article  PubMed  Google Scholar 

  34. Boudarham J, Roche N, Teixeira M, Hameau S, Robertson J, Bensmail D, Zory R (2014) Relationship between neuromuscular fatigue and spasticity in chronic stroke patients: a pilot study. J Electromyogr Kinesiol 24(2):292–2. doi:10.1016/j.jelekin.2013.11.006

    Article  PubMed  Google Scholar 

  35. Joensen J, Demmink JH, Johnson MI, Iversen VV, Lopes-Martins RAB, Bjordal JM (2011) The thermal effects of therapeutic lasers with 810 and 904 nm wavelengths on human skin. Photomed Laser Surg 29(3):145–53. doi:10.1089/pho.2010.2793

    Article  PubMed  Google Scholar 

  36. Leal Junior ECP, Baroni BM, Rossi RP, Godoi V, Marchi T, Tomazoni SS, Almeida P, Salvador M, Grosselli D, Generosi RA, Basso M, Mancalossi JL, Lopes Martins RAB (2011) A fototerapia com diodo emissor de luz (LEDT) aplicada pré-exercício inibe a peroxidação lipídica em atletas após exercício de alta intensidade: um estudo preliminar. Rev Bras Med Esporte 17(1):8–12. doi:10.1590/S1517-86922011000100001

    Google Scholar 

  37. Carvalho RLP, Alcântara PS, Kamamoto F, Cressoni MDC, Casarotto RA (2010) Effects of low-level laser therapy on pain and scar formation after inguinal herniation surgery: a randomized controlled single-blind study. Photomed Laser Surg 8(3):417–22. doi:10.1089/pho.2009.2548

    Article  Google Scholar 

  38. Aimbire F, Bjordal JM, Iversen VV, Albertini R, Frigo L, Pacheco MTT, Castro-Faria-Neto HC, Chavantes MC, Labat RM, Lopes-Martins RAB (2006) Low level laser therapy partially restores trachea muscle relaxation response in rats with tumor necrosis factor α-mediated smooth airway muscle dysfunction. Lasers Surg Med 38(8):773–8. doi:10.1002/lsm.20357

    Article  CAS  PubMed  Google Scholar 

  39. Bertolini G, Meireles A, Rocha B, Rosa C, Silva L, Carvalho A (2012) Peripheral endogenous opioids in low level laser therapy analgesia, 820 nm, in Wistar rats with acute knee synovitis. Phys Ther Sport 13(3), e3. doi:10.1016/j.ptsp.2012.03.006

    Article  Google Scholar 

  40. Assis L, Moretti AIS, Abrahão TB, Cury V, Souza HP, Hamblin MR, Parizotto NA (2012) Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg Med 44:726–35. doi:10.1002/lsm.22077

    Article  PubMed  PubMed Central  Google Scholar 

  41. de Moraes Maia ML, Ribeiro MAG, Maia LGM, Stuginski-Barbosa J, Costa YM, Porporatti AL, Bonjardim LR (2014) Evaluation of low-level laser therapy effectiveness on the pain and masticatory performance of patients with myofascial pain. Lasers Med Sci 29(1):29–35. doi:10.1007/s10103-012-1228-7

    Article  PubMed  Google Scholar 

  42. Hagiwara S, Iwasaka H, Okuda K, Noguchi T (2007) GaAlAs (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Lasers Surg Med 39(10):797–802. doi:10.1002/lsm.20583

    Article  PubMed  Google Scholar 

  43. Yamany AA, Sayed HM (2012) Effect of low level laser therapy on neurovascular function of diabetic peripheral neuropathy. J Adv Res 3(1):21–28. doi:10.1016/j.jare.2011.02.009

    Article  Google Scholar 

  44. Ruaro JA, Fréz AR, Ruaro MB, Nicolau RA (2014) Low-level laser therapy to treat fibromyalgia. Lasers Med Sci 1–5. doi: 10.1007/s10103-014-1566-8

  45. Antonialli FC, De Marchi T, Tomazoni SS, Vanin AA, dos Santos Grandinetti V, de Paiva PRV, Leal-Junior ECP (2014) Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci 1-10. doi: 10.1007/s10103-014-1611-7

  46. Alves I, Cruz VT, Grebe HP (2013) Spasticity as the first manifestation of ischaemic lesions involving the cingulum. Case Rep Neurol Med 2013:3

    Google Scholar 

  47. Moreira PVS, Teodoro BG, Neto AMM (2008) Bases neurais e metabólicas da fadiga durante o exercício. Bioscience Journal (Online), 24(1): http://portal.revistas.bvs.br/index.php?search=Biosci.%20j.%20(Online)&connector=ET&lang=pt

  48. Kelencz CA, Muñoz IS, Amorim CF, Nicolau RA (2010) Effect of low-power gallium-aluminium-arsenium noncoherent light (640 nm) on muscle activity: a clinical study. Photomed Laser Surg 28(5):647–52. doi:10.1089/pho.2008.2467

    Article  CAS  PubMed  Google Scholar 

  49. Maciel TDS, Silva JD, Jorge FS, Nicolau RA (2013) A influência do laser 830 nm no desempenho do salto de atletas de voleibol feminino; the influence of the 830 nm laser on the jump performance of female volleyball athletes. Rev Bras Eng Biomed 29(2):199–205. doi:10.4322/rbeb.2013.020

    Article  Google Scholar 

  50. Nicolau RA, Martinez MS, Rigau J, Tomas J (2004) Neurotransmitter release changes induced by low power 830 nm diode laser irradiation on the neuromuscular junctions of the mouse. Lasers Surg Med 35(3):236–241. doi:10.1002/lsm.20087

    Article  PubMed  Google Scholar 

  51. Piva JAAC, Abreu EMC, Silva VS, Nicolau RA (2011) Effect of low-level laser therapy on the initial stages of tissue repair: basic principles. An Bras Dermatol 86(5):947–54. doi:10.1590/S0365-05962011000500013

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) for the financial support. (PE 030/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcele Florêncio das Neves.

Ethics declarations

Ethical standards

This research was carried out in accordance with current Brazilian laws relating to experiments in humans.

Conflict of interest

The authors declare that they have no conflicts of interest.

Open access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

das Neves, M.F., dos Reis, M.C.R., de Andrade, E.A.F. et al. Effects of low-level laser therapy (LLLT 808 nm) on lower limb spastic muscle activity in chronic stroke patients. Lasers Med Sci 31, 1293–1300 (2016). https://doi.org/10.1007/s10103-016-1968-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-1968-x

Keywords

Navigation