Skip to main content

Advertisement

Log in

Atomic force microscopy investigation of the interaction of low-level laser irradiation of collagen thin films in correlation with fibroblast response

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level red laser (LLRL)–tissue interactions have a wide range of medical applications and are garnering increased attention. Although the positive effects of low-level laser therapy (LLLT) have frequently been reported and enhanced collagen accumulation has been identified as one of the most important mechanisms involved, little is known about LLRL–collagen interactions. In this study, we aimed to investigate the influence of LLRL irradiation on collagen, in correlation with fibroblast response. Atomic force microscopy (AFM) and fluorescence spectroscopy were used to characterize surfaces and identify conformational changes in collagen before and after LLRL irradiation. Irradiated and non-irradiated collagen thin films were used as culturing substrates to investigate fibroblast response with fluorescence microscopy. The results demonstrated that LLRL induced small alterations in fluorescence emission and had a negligible effect on the topography of collagen thin films. However, fibroblasts cultured on LLRL-irradiated collagen thin films responded to LRLL. The results of this study show for the first time the effect of LLRL irradiation on pure collagen. Although irradiation did not affect the nanotopography of collagen, it influenced cell behavior. The role of collagen appears to be crucial in the LLLT mechanism, and our results demonstrated that LLRL directly affects collagen and indirectly affects cell behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mandel A, Hamblin MR (2012) A renaissance in low-level laser (light) therapy—LLLT. Photonics and Lasers in Med 1(4):231–234. doi:10.1515/plm-2012-0044

    Article  Google Scholar 

  2. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533. doi:10.1007/s10439-011-0454-7

    Article  PubMed Central  PubMed  Google Scholar 

  3. Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5(2):58–62

    PubMed Central  PubMed  Google Scholar 

  4. AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27(1):237–249. doi:10.1007/s10103-011-0885-2

    Article  PubMed  Google Scholar 

  5. Gupta A, Dai T, Hamblin MR (2014) Effect of red and near-infrared wavelengths on low-level laser (light) therapy-induced healing of partial-thickness dermal abrasion in mice. Lasers Med Sci 29(1):257–265. doi:10.1007/s10103-013-1319-0

    Article  PubMed  Google Scholar 

  6. Lyons RF, Abergel RP, White RA, Dwyer RM, Castel JC, Uitto J (1987) Biostimulation of wound healing in vivo by a helium-neon laser. Ann Plast Surg 18(1):47–50. doi:10.1097/00000637-198701000-00011

    Article  CAS  PubMed  Google Scholar 

  7. Hawkins D, Houreld N, Abrahamse H (2005) Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing. Ann N Y Acad Sci 1056:486–493. doi:10.1196/annals.1352.040

    Article  CAS  PubMed  Google Scholar 

  8. Fiório FB, Albertini R, Leal-Junior ECP, de Carvalho PTC (2013) Effect of low-level laser therapy on types I and III collagen and inflammatory cells in rats with induced third-degree burns. Lasers Med Sci 29(1):1–7. doi:10.1007/s10103-013-1341-2

    Google Scholar 

  9. Pugliese LS, Medrado AP, Reis SR, Andrade ZA (2003) The influence of low-level laser therapy on biomodulation of collagen and elastic fibers. Pesqui Odontol Bras 17(4):307–313

    Article  PubMed  Google Scholar 

  10. Hawkins DH, Abrahamse H (2006) The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation. Lasers Surg Med 38(1):74–83. doi:10.1002/lsm.20271

    Article  PubMed  Google Scholar 

  11. Fushimi T, Inui S, Nakajima T, Ogasawara M, Hosokawa K, Itami S (2012) Green light emitting diodes accelerate wound healing: characterization of the effect and its molecular basis in vitro and in vivo. Wound Repair Regen 20(2):226–235. doi:10.1111/j.1524-475X.2012.00771.x

    Article  PubMed  Google Scholar 

  12. Peplow PV, Chung TY, Baxter GD (2012) Laser photostimulation (660nm) of wound healing in diabetic mice is not brought about by ameliorating diabetes. Lasers Surg Med 44(1):26–29. doi:10.1002/lsm.21133

    Article  PubMed  Google Scholar 

  13. Fratzl P (2008) Collagen structure and mechanics. Book, Edited. Springer, New York. doi: 10.1007/978-0-387-73906-9

  14. Heino J (2007) The collagen family members as cell adhesion proteins. Bioessays 29(10):1001–1010. doi:10.1002/bies.20636

    Article  CAS  PubMed  Google Scholar 

  15. Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120(12):1955–1958. doi:10.1242/jcs.03453

    Article  CAS  PubMed  Google Scholar 

  16. Tsai SW, Cheng YH, Chang Y, Liu HL, Tsai WB (2010) Type I collagen structure modulates the behavior of osteoblast-like cells. J Taiwan Inst Chem E 41(3):247–251. doi:10.1016/j.jtice.2009.10.002

    Article  CAS  Google Scholar 

  17. Plant AL, Bhadriraju K, Spurlin TA, Elliott JT (2009) Cell response to matrix mechanics: focus on collagen. Biochim Biophys Acta 1793(5):893–902. doi:10.1016/j.bbamcr.2008.10.012

    Article  CAS  PubMed  Google Scholar 

  18. Stylianou A, Yova D, Alexandratou E (2013) Nanotopography of collagen thin films in correlation with fibroblast response. J Nanophotonics 7(1):073590. doi:10.1117/1.JNP.7.073590

    Article  Google Scholar 

  19. Medrado AP, Soares AP, Santos ET, Reis SRA, Andrade ZA (2008) Influence of laser photobiomodulation upon connective tissue remodeling during wound healing. J Photochem Photobiol B 92(3):144–152. doi:10.1016/j.jphotobiol.2008.05.008

    Article  CAS  PubMed  Google Scholar 

  20. Garavello-Freitas I, Baranauskas V, Joazeiro PP, Padovani CR, Dal Pai-Silva M, da Cruz-Höfling MA (2003) Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats. J Photochem Photobiol B 70(2):81–89. doi:10.1016/s1011-1344(03)00058-7

    Article  CAS  PubMed  Google Scholar 

  21. Fung DTC, Ng GYF, Leung MCP, Tay DKC (2003) Effects of a therapeutic laser on the ultrastructural morphology of repairing medial collateral ligament in a rat model. Lasers Surg Med 32(4):286–293. doi:10.1002/lsm.10161

    Article  PubMed  Google Scholar 

  22. Stylianou A, Kontomaris SB, Kyriazi M, Yova D (2010) Surface characterization of collagen films by atomic force microscopy. In: 12th Mediterranean Conference on Medical and Biological Engineering and Computing, MEDICON 2010. pp 612–615. doi:10.1007/978-3-642-13039-7_154

  23. Stylianou A, Yova D, Politopoulos K (2012) Atomic force microscopy quantitative and qualitative nanoscale characterization of collagen thin films. In: 5th International Conference on Emerging Technologies in Non-Destructive Testing. NDT 2012:415–420. doi:10.1201/b11837-75

    Google Scholar 

  24. Baranauskas V, Garavello I, Jingguo Z, Da Cruz-Höfling MA (2005) Analyses of regenerative bone matrix of rat tibia after laser photo-excitation by SEM and AFM. Appl Surf Sci 248(1–4):492–498. doi:10.1016/j.apsusc.2005.03.097

    Article  CAS  Google Scholar 

  25. Stylianou A, Yova D (2013) Surface nanoscale imaging of collagen thin films by atomic force microscopy. Mater Sci Eng C Mater Biol Appl 33(5):2947–2957. doi:10.1016/j.msec.2013.03.029

    Article  CAS  PubMed  Google Scholar 

  26. Stylianou A, Politopoulos K, Kyriazi M, Yova D (2011) Combined information from AFM imaging and SHG signal analysis of collagen thin films. Biomed Signal Proces 6(3):307–313. doi:10.1016/j.bspc.2011.02.006

    Article  Google Scholar 

  27. França CM, Núñez SC, Prates RA, Noborikawa E, Faria MR, Ribeiro MS (2009) Low-intensity red laser on the prevention and treatment of induced-oral mucositis in hamsters. J Photochem Photobiol B 94(1):25–31. doi:10.1016/j.jphotobiol.2008.09.006

    Article  PubMed  Google Scholar 

  28. Lakowicz J (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  29. Alexandratou E, Yova D, Handris P, Kletsas D, Loukas S (2002) Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci 1(8):547–552. doi:10.1039/b110213n

    Article  CAS  PubMed  Google Scholar 

  30. Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78(1). doi:10.1063/1.2432410

  31. Wu K, Liu W, Li G (2013) The aggregation behavior of native collagen in dilute solution studied by intrinsic fluorescence and external probing. Spectrochim Acta A Mol Biomol Spectrosc 102:186–193. doi:10.1016/j.saa.2012.10.048

    Article  CAS  PubMed  Google Scholar 

  32. Torikai A, Shibata H (1999) Effect of ultraviolet radiation on photodegradation of collagen. J Appl Polym Sci 73(7):1259–1265

    Article  CAS  Google Scholar 

  33. Silver FH, Freeman JW, Seehra GP (2003) Collagen self-assembly and the development of tendon mechanical properties. J Biomech 36(10):1529–1553. doi:10.1016/s0021-9290(03)00135-0

    Article  PubMed  Google Scholar 

  34. Tunér J, Hode L (1998) It's all in the parameters: a critical analysis of some well-known negative studies on low-level laser therapy. J Clin Laser Med Surg 16(5):245–248

    PubMed  Google Scholar 

  35. Odetti PR, Borgoglio A, Rolandi R (1992) Age-related increase of collagen fluorescence in human subcutaneous tissue. Metabolism 41(6):655–658. doi:10.1016/0026-0495(92)90059-j

    Article  CAS  PubMed  Google Scholar 

  36. Sell DR, Nemet I, Monnier VM (2010) Partial characterization of the molecular nature of collagen-linked fluorescence: role of diabetes and end-stage renal disease. Arch Biochem Biophys 493(2):192–206. doi:10.1016/j.abb.2009.10.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Perez Gutierrez RM (2012) Inhibition of advanced glycation end-product formation by Origanum majorana L. in vitro and in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med 2012, art. no. 598638. doi: 10.1155/2012/598638

  38. Dina RC, Vladu I, Dina CA, Mitrea A (2012) Advanced glycation end products measured by AGE Reader in a group of patients with obesity. Rom J Diabetes Nutr Metab Dis 19(1):59–66

    CAS  Google Scholar 

  39. Babu PVA, Sabitha KE, Shyamaladevi CS (2008) Effect of green tea extract on advanced glycation and cross-linking of tail tendon collagen in streptozotocin induced diabetic rats. Food Chem Toxicol 46(1):280–285. doi:10.1016/j.fct.2007.08.005

    Article  CAS  PubMed  Google Scholar 

  40. Stylianou A, Yova D, Alexandratou E, Petri A (2013) Atomic force imaging microscopy investigation of the interaction of ultraviolet radiation with collagen thin films. In: Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications X, 2013 2012. doi:10.1117/12.2002460

  41. Loesberg WA, te Riet J, van Delft FCMJM, Schön P, Figdor CG, Speller S, van Loon JJWA, Walboomers XF, Jansen JA (2007) The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials 28(27):3944–3951. doi:10.1016/j.biomaterials.2007.05.030

    Article  CAS  PubMed  Google Scholar 

  42. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.1016/j.cell.2006.06.044

    Article  CAS  PubMed  Google Scholar 

  43. Spurlin TA, Bhadriraju K, Chung KH, Tona A, Plant AL (2009) The treatment of collagen fibrils by tissue transglutaminase to promote vascular smooth muscle cell contractile signaling. Biomaterials 30(29):5486–5496. doi:10.1016/j.biomaterials.2009.07.014

    Article  CAS  PubMed  Google Scholar 

  44. Fassett J, Tobolt D, Hansen LK (2006) Type I collagen structure regulates cell morphology and EGF signaling in primary rat hepatocytes through cAMP-dependent protein kinase A. Mol Biol Cell 17(1):345–356. doi:10.1091/mbc.E05-09-0871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ross AM, Jiang Z, Bastmeyer M, Lahann J (2012) Physical aspects of cell culture substrates: topography, roughness, and elasticity. Small 8(3):336–355. doi:10.1002/smll.201100934

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. D. Kletsas from the Laboratory of “Cell Proliferation and Ageing” of the National Center for Scientific Research “Demokritos” for kindly providing the human fibroblasts primary cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Stylianou.

Ethics declarations

Funding

This research has been co-financed by the European Union (European Social Fund, ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stylianou, A., Yova, D. Atomic force microscopy investigation of the interaction of low-level laser irradiation of collagen thin films in correlation with fibroblast response. Lasers Med Sci 30, 2369–2379 (2015). https://doi.org/10.1007/s10103-015-1823-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1823-5

Keywords

Navigation