Skip to main content
Log in

Optimal and safe treatment of spider leg veins measuring less than 1.5 mm on skin type IV patients, using repeated low-fluence Nd:YAG laser pulses after polidocanol injection

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Treatment of micro-veins of less than 1.5 mm with laser and with chemical sclerosis is technically challenging because of their difficulty to remedy. Laser treatment is even more difficult when dark phototypes are involved.Three groups of 30 patients each, skin type IV, and vessels measuring less than 1.5 mm in diameter, were enrolled for two treatment sessions 8 weeks apart: group A, polidocanol (POL) micro-foam injection; group B, Nd:YAG laser alone; and group C, laser after POL injection. Repeated 8-Hz low-fluence pulses, moving the hand piece over a 3-cm vein segment with an average of five laser passes maximum and with a total time irradiation of 1 s were used. Sixteen weeks after the second treatment, statistically, degree of clearance after examining photographs and patients satisfaction index, plotted on a visual analogue scale and comparing results of all three groups, results were significantly better for group C (p < 0.0001). No significant differences in complications were noticed between the three groups. Efficacy of combining POL and laser proved safe and satisfactory in 96 % of patients using low-fluence laser pulses with a total cumulative energy in the 3 cm venous segment, lower than that of conventional treatment. Very few and transient complications were observed. POL foam injection followed by laser pulses is safe and efficient for vein treatment in dark-skinned patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cavezzi A, Frullini A, Ricci S, Tessari L (2002) Treatment of varicose veins by foam sclerotherapy: two clinical series. Phlebology 17:13–18

    Google Scholar 

  2. Frullini A (2000) New technique in producing sclerosing foam in a disposable syringe. Dermatol Surg 26:705–706

    Article  PubMed  CAS  Google Scholar 

  3. Sadick N, Prieto V, Shea C, Nicholson J, McCaffrey T (2001) Clinical and pathophysiologic correlates of 1064-nm Nd:YAG laser treatment of reticular veins and venulectasias. Arch Dermatol 137:613–617

    PubMed  CAS  Google Scholar 

  4. Sadick N (2001) Long-term results with a multiple synchronized-pulse 1064 nm Nd:YAG laser for the treatment of leg venulectasias and reticular veins. Dermatol Surg 27:365–369

    Article  PubMed  CAS  Google Scholar 

  5. Sadick N (2003) Laser treatment with a 1064-nm laser for lower extremity class I-III veins employing variable spots and pulse width parameters. Dermatol Surg 29:916–919

    Article  PubMed  Google Scholar 

  6. Trelles M, Weiss R, Moreno-Moraga J, Carmen Romero C, Vélez M, Alvarez X (2010) Treatment of leg veins with combined pulsed dye and Nd:YAG lasers: 60 patients assessed at 6 months. Lasers Surg Med 42:609–614

    Article  PubMed  Google Scholar 

  7. Moreno J, Royo J, Cornejo P, González-Ureña A, Orea JM, Jiménez J (2004) Utilización de una inyección previa de polidocanol en forma de microespuma para la extirpación indolora de varices mediante láser. Bol Oficial Prop. Indust., Madrid, ES 2 247 898: 383-397

  8. López Dominguez H, Royo de la Torre J, Cornejo Navarro P, Sanz Alonso I, Moreno Moraga J (2004) Intensificación de la absorción del láser químicamente inducida en el tratamiento de las varices. Abstr Surginews VII J Int 20:6–7

    Google Scholar 

  9. Isarría MJ, Moreno J. Photodynamic therapy for varices (2007) IMCAS Abstracts Congress Book, Paris, January 2007, 223

  10. Wollmann JC (2004) The history of sclerosing foams. Dermatol Surg 30:694–703

    Article  PubMed  Google Scholar 

  11. Altshuler GB, Anderson RR, Manstein D, Zenzie HH, Smirnov MZ (2001) Extended theory of selective photothermolysis. Lasers Surg Med 29:416–432

    Article  PubMed  CAS  Google Scholar 

  12. Suthamjariya K, Farinelli WA, Koh W, Anderson RR (2004) Mechanisms of microvascular response to laser pulses. J Invest Dermatol 122(2):518–525

    Article  PubMed  CAS  Google Scholar 

  13. Trelles M, Smarandache A, Moreno-Moraga J, PAScu ML (2010) Studies of the optical properties of the commercial grade Aetoxisclerol. The Annual Conference of the faculty of Physics, Bucharest, Romania

  14. Ross EV, Domankevitz Y (2005) Laser treatment of leg veins: physical mechanisms and theoretical considerations. Lasers Surg Med 36(2):105–116

    Article  PubMed  Google Scholar 

  15. Tessari L (2001) Extemporary sclerosing foam according to personal method: experimental clinical data and catheter usage. Int Angiol Suppl 1:54

    Google Scholar 

  16. Tessari L, Cavezzi A, Frullini A (2001) Preliminary experience with a new sclerosing foam in the treatment of varicose veins. Dermatol Surg 27:58–60

    Article  PubMed  CAS  Google Scholar 

  17. Ratbun S, Norris A, Stoner S (2012) Efficacy and safety of endovenous foam sclerotherapy: meta-analysis for treatment of venous disorders. Phlebology 27(3):105–117. doi:10.1258/phleb.2011.011111, Epub 2012 Feb 20

    Article  Google Scholar 

  18. Romero F, Trelles OR, Trelles MA (2008) Modelado de la piel en fototerapia y crioprotección de la epidermis. Láser en Dermatología y Dermocosmética. Ed. Aula Médica, Madrid, pp 559–579

    Google Scholar 

  19. Arthur C. Guyton, John E. Hall (2007) Text book of medical physiology. Philadelphia, Elsevier, pp 632-57

  20. Scheider JR (2012) Commentary to accompany ‘cost and effectiveness of laser with phlebectomies compared with foam sclerotherapy in superficial venous insufficiency. Early results of a randomised controlled trial’. Eur J Vasc Endovasc Surg 43(5):601, Epub 2012 Mar 15

    Article  Google Scholar 

  21. Smarandache A, Trelles M, Pascu ML (2009) Measurement of the modifications of Polidocanol absorption spectra after exposure to NIR laser radiation. J Optoelectrons Adv Mater 12(9):1942–1945

    Google Scholar 

  22. Coles CM, Werner RS, Zelickson BD (2002) Comparative pilot study evaluating the treatment of leg veins with a long pulse Nd:YAG laser and sclerotherapy. Lasers Surg Med 30(2):154–159

    Article  PubMed  Google Scholar 

  23. Omura NE, Dover JS, Arndt KA, Kauvar AN (2003) Treatment of reticular leg veins with a 1064 nm log-pulsed Nd:YAG laser. J Am Acad Dermatol 48(1):76–81

    Article  PubMed  Google Scholar 

  24. Trelles OR, Martín Vázquez M, Sola Vázquez A, Trelles MA (2008) Evolución objetiva de resultados en fototerapia cutánea. Láser en Dermatología y Dermocosmética. Ed. Aula Médica, Madrid, pp 541–557

    Google Scholar 

  25. Royo J, Urdiales F, Moreno J, Al-Zarouni M, Cornejo P, Trelles MA (2011) Six month follow-up multicenter prospective study of 368 patients phototypes III to V, on depilation efficacy using an 810 nm Diode laser at low fluence. Lasers Med Sci 26(2):247–255

    Google Scholar 

  26. Jaggi R, Goldman MP (2003) Prospective, comparative evaluation of three laser systems used individually and in combination for axillary hair removal. Dermatol Surg 31(12):1671–1677

    Google Scholar 

  27. Miyake RK, Miyake H, Duarte FH, Ribeiro RJR (2003) Microvarizes e telangiectasias. Angiologia e cirugía vascular:guia ilustrado. UNCISAL/ECMAL& LAVA, Maceió, p 36

    Google Scholar 

  28. Langston PG, Jarvis DA, Lewis G, Osborne GA, Russell WJ (1993) The determination of absorption coefficients for measurement of carboxy-hemoglobin, oxy-hemoglobin, reduced hemoglobin and met-hemoglobin in sheep using the IL482 CO-oximeter. J Anal Toxicol 17(5):278–283

    Article  PubMed  CAS  Google Scholar 

  29. Mordon S, Rochon P, Dhelin G, Lesage JC (2005) Dynamics of temperature dependent modifications of blood in the near-infrared. Lasers Surg Med 37:301–307

    Article  PubMed  Google Scholar 

  30. Levy J, Elbahr C, Jouve E, Mordon S (2004) Comparison and sequential study of long pulsed Nd:YAG 1,064 nm laser and sclerotherapy in leg telangiectasias treatment. Lasers Surg Med 24(3):273–276

    Article  Google Scholar 

  31. Randeberg LL, Daae Hagen A, Svaasand L (2002) Optical properties of human blood as a function of temperature. Proc Soc Photo-Instrum Eng 4609:20–29

    Google Scholar 

  32. Black FB, Barton JK (2004) Chemical and structural changes in blood undergoing laser photocoagulation. Photochem Photobiol 80:89–97

    Article  PubMed  CAS  Google Scholar 

  33. Black FB, Wade N, Barton JK (2005) Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1,064 nm. Lasers Surg Med 36:155–165

    Article  PubMed  Google Scholar 

  34. Mordon S, Brisot D, Fournier N (2003) Using a “non uniform pulse sequence” can improve selective coagulation with a Nd:YAG laser (1.06 microm) thanks to Met-hemoglobin absorption: a clinical study on blue leg veins. Lasers Surg Med 32(2):160–170

    Article  PubMed  Google Scholar 

  35. Van Dam J, Brugge WR (1999) Endoscopy of the upper gastrointestinal tract. N Engl J Med 341(23):1738–1748

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Trelles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Moraga, J., Hernández, E., Royo, J. et al. Optimal and safe treatment of spider leg veins measuring less than 1.5 mm on skin type IV patients, using repeated low-fluence Nd:YAG laser pulses after polidocanol injection. Lasers Med Sci 28, 925–933 (2013). https://doi.org/10.1007/s10103-012-1180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1180-6

Keywords

Navigation