Skip to main content

Laser Treatment for Spider Veins

  • Chapter
  • First Online:
Handbook of Lasers in Dermatology

Abstract

Increased venous pressure causes dilation of normal leg veins creating varicose or spider veins. This can be a consequence of loss of smooth muscle tone causing valvular insufficiency or more rarely deep vein thrombosis. The treatment of choice for eliminating spider veins of the leg is sclerotherapy, although the use of laser technology as a safe and relatively painless alternative has been long anticipated. We will discuss in this chapter some lasers and light therapies that have been used, including the argon, copper bromide, Nd:YAG, diode, long-pulse infrared Alexandrite and pulsed dye lasers, as well as the intense pulsed light. These are indicated for vessels of different sizes and depths and have different clearance rates. Unfortunately, laser therapy has not been found to be as effective, but it can be used as a supplementary form of therapy. Development of new technologies or the significant improvement of present technologies, as well as adjuvant therapies should be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss RA, Weiss MA, Beasley KL. Sclerotherapy and vein treatment. New York: McGraw-Hill; 2013.

    Google Scholar 

  2. Nouri K, editor. Lasers in dermatology and medicine. New York: Springer; 2011.

    Google Scholar 

  3. Goldman MP, Sadick NS, Weiss RA. The history of dermatology in American phlebology. Dermatol Surg. 2000;26(7):616–21.

    Article  CAS  PubMed  Google Scholar 

  4. Weiss RA, Dover JS. Laser surgery of leg veins. Dermatol Clin. 2002;20(1):19–36.

    Article  PubMed  Google Scholar 

  5. Sadick NS, Weiss RA, Goldman MP. Advances in laser surgery for leg veins: bimodal wavelength approach to lower extremity vessels, new cooling techniques, and longer pulse durations. Dermatol Surg. 2002;28(1):16–20. Review.

    PubMed  Google Scholar 

  6. Weiss RA, Sadick NS. Epidermal cooling crystal collar device for improved results and reduced side effects on leg telangiectasias using intense pulsed light. Dermatol Surg. 2000;26(11):1015–8.

    Article  CAS  PubMed  Google Scholar 

  7. Tan OT, Murray S, Kurban AK. Action spectrum of vascular specific injury using pulsed irradiation. J Invest Dermatol. 1989;92(6):868–71.

    Article  CAS  PubMed  Google Scholar 

  8. Anderson RR, Parrish JA. Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg Med. 1981;1(3):263–76.

    Article  CAS  PubMed  Google Scholar 

  9. Smithies DJ, Butler PH. Modelling the distribution of laser light in port-wine stains with the Monte Carlo method. Phys Med Biol. 1995;40(5):701–31.

    Article  CAS  PubMed  Google Scholar 

  10. Dierickx CC, Casparian JM, Venugopalan V, Farinelli WA, Anderson RR. Thermal relaxation of port-wine stain vessels probed in vivo: the need for 1–10 millisecond laser pulse treatment. J Invest Dermatol. 1995;105:709–14.

    Article  CAS  PubMed  Google Scholar 

  11. Braverman IM. Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states. J Invest Dermatol. 1989;93:2S–9S.

    Article  CAS  PubMed  Google Scholar 

  12. Kienle A, Hibst R. Optimal parameters for laser treatment of leg telangiectasia. Lasers Surg Med. 1997;20(3):346–53.

    Article  CAS  PubMed  Google Scholar 

  13. Weiss RA, Weiss MA. Early clinical results with a multiple synchronized pulse 1064 NM laser for leg telangiectasias and reticular veins. Dermatol Surg. 1999;25(5):399–402. PubMed PMID: 10469080.

    Article  CAS  PubMed  Google Scholar 

  14. Sommer A, Van MP, Neumann HA, Kessels AG. Red and blue telangiectasias. Differences in oxygenation? Dermatol Surg. 1997;23(1):55–9.

    Article  CAS  PubMed  Google Scholar 

  15. de Faria JL, Moraes IN. Histopathology of telangiectasias associated with varicose veins. Dermatologica. 1963;127:321–9.

    Article  Google Scholar 

  16. Greve B, Raulin C. Laser therapy for vascular lesions. Hautarzt. 2006;57(6):537–48.

    Article  CAS  PubMed  Google Scholar 

  17. Weiss RA, Sadick NS, Goldman M, Weiss MA. Post-sclerotherapy compression: controlled comparative study of duration of compression and its effects on clinical outcome. Dermatol Surg. 1999;25(2):105–8.

    Article  CAS  PubMed  Google Scholar 

  18. McCoppin HH, Hovenic WW, Wheeland RG. Laser treatment of superficial leg veins: a review. Dermatol Surg. 2011;37(6):729–41.

    CAS  PubMed  Google Scholar 

  19. West TB, Alster TS. Comparison of the long-pulse dye (590–595 nm) and KTP (532 nm) lasers in the treatment of facial and leg telangiectasias. Dermatol Surg. 1998;24(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  20. Spendel S, Prandl EC, Schintler MR, Siegl A, et al. Treatment of spider veins with the KTP (532 nm laser) – a prospective study. Lasers Surg Med. 2002;31:194–201.

    Article  PubMed  Google Scholar 

  21. Fournier N, Brisot D, Mordon S. Treatment of leg telangiectases with a 532 nm KTP laser in multipulse mode. Dermatol Surg. 2002;28:564–71.

    CAS  PubMed  Google Scholar 

  22. Bernstein EF, Kornbluth S, Brown DB, Black J. Treatment of spider veins using a 10 millisecond pulse-duration frequency doubled neodymium YAG laser. Dermatol Surg. 1999;25(4):316–20.

    Article  CAS  PubMed  Google Scholar 

  23. Kono T, Yamaki T, Erçöçen AR, Fujiwara O, Nozaki M. Treatment of leg veins with the long pulse dye laser using variable pulse durations and energy fluences. Lasers Surg Med. 2004;35(1):62–7.

    Article  PubMed  Google Scholar 

  24. Dover JS, Sadick NS, Goldman MP. The role of lasers and light sources in the treatment of leg veins. Dermatol Surg. 1999;25(4):328–35; discussion 335–6.

    Article  CAS  PubMed  Google Scholar 

  25. Reichert R. Evaluation of the long-pulsed dye laser for treatment of leg telangiectasia. Dermatol Surg. 1998;24:737–40.

    CAS  PubMed  Google Scholar 

  26. Goldman MP, Sadick NS, Weiss RA. Treatment of spider veins with the 595 nm pulsed-dye laser. J Am Acad Dermatol. 2000;42(5 Pt 1):849–50. No abstract available.

    Article  CAS  PubMed  Google Scholar 

  27. Hohenleutner U, Walther T, Wenig M, Baumler W, Landthaler M. Leg telangiectasia treatment with a 1.5 ms pulsed dye laser, ice cube cooling of the skin and 595 vs 600 nm: preliminary results. Lasers Surg Med. 1998;23(2):72–8.

    Article  CAS  PubMed  Google Scholar 

  28. Bernstein EF. The new-generation, high-energy, 595-nm, long pulse-duration pulsed-dye laser improves the appearance of photodamaged skin. Lasers Surg Med. 2007;39(2):157–63.

    Article  PubMed  Google Scholar 

  29. Lee HI, Lim YY, Kim BJ, Kim MN, Min HJ, Hwang JH, et al. Clinicopathologic efficacy of copper bromide plus/yellow laser (578 nm with 511 nm) for treatment of melasma in Asian patients. Dermatol Surg. 2010;36(6):885–93.

    Article  CAS  PubMed  Google Scholar 

  30. McDaniel DH, Ash K, Lord J, Newman J, Adrian RM, Zukowski M. Laser therapy of spider leg veins: clinical evaluation of a new long pulsed alexandrite laser. Dermatol Surg. 1999;25(1):52–8, [in process citation].

    Article  CAS  PubMed  Google Scholar 

  31. Ross EV, Meehan KJ, Gilbert S, et al. Optimal pulse durations for the treatment of leg telangectasia with an alexandrite laser. Lasers Surg Med. 2009;41(2):104–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kauvar AN, Lou WW. Pulsed alexandrite laser for the treatment of leg telangiectasia and reticular veins. Arch Dermatol. 2000;136(11):1371–5.

    CAS  PubMed  Google Scholar 

  33. Eremia S, Li C, Umar SH. A side-by-side comparative study of 1064 nm Nd:YAG, 810 nm diode and 755 nm alexandrite lasers for treatment of 0.3-3 mm leg veins. Dermatol Surg. 2002;28(3):224–30.

    PubMed  Google Scholar 

  34. Garden JM, Bakus AD, Miller ID. Diode laser treatment of leg veins. Lasers Surg Med. 1998;10(Suppl):38.

    Google Scholar 

  35. Kaudewitz P, Klövekorn W, Rother W. Effective treatment of leg vein telangiectasia with a new 940 nm diode laser. Dermatol Surg. 2001;27:101–6.

    CAS  PubMed  Google Scholar 

  36. Trelles MA, Martín-Vázquez M, Trelles OR, Mordon SR. Treatment effects of combined radio-frequency current and a 900 nm diode laser on leg blood vessels. Lasers Surg Med. 2006;38(3):185–95.

    Article  PubMed  Google Scholar 

  37. Bencini PL, Tourlaki A, De Giorgi V, Galimberti M. Laser use for cutaneous vascular alterations of cosmetic interest. Dermatol Ther. 2012;25(4):340–51.

    Article  PubMed  Google Scholar 

  38. Bäumler W, Ulrich H, Hartl A, Landthaler M, et al. Optimal parameters for the treatment of leg veins using Nd:YAG lasers at 1064 nm. Br J Dermatol. 2006;155:364–71.

    Article  PubMed  Google Scholar 

  39. Alora MBT, Anderson RR. Recent developments in cutaneous lasers. Lasers Surg Med. 2000;26:108–18.

    Article  CAS  PubMed  Google Scholar 

  40. Parlette EC, Groff WF, Kinshella MJ, Domankevitz Y, et al. Optimal pulse durations for the treatment of leg telangiectasias with a neodymium YAG laser. Lasers Surg Med. 2006;38:98–105.

    Article  PubMed  Google Scholar 

  41. Ross EV, Domankevitz Y. Laser leg vein treatment: a brief overview. J Cosmet Laser Ther. 2003;5:192–297.

    Article  PubMed  Google Scholar 

  42. Omura NE, Dover JS, Arndt KA, Kauvar AN. Treatment of reticular legs veins with a 1064 nm long pulse Nd:YAG laser. J Am Acad Dermatol. 2003;48:76–81.

    Article  PubMed  Google Scholar 

  43. Kauvar ANB, Khrom T. Laser treatment of leg veins. Semin Cutan Med Surg. 2005;24:184–92.

    Article  CAS  PubMed  Google Scholar 

  44. Sadick NS. Laser and intense pulsed light therapy for the esthetic treatment of lower extremity veins. Am J Clin Dermatol. 2003;4:545–54.

    Article  PubMed  Google Scholar 

  45. Bäumler W, Vural E, Landthaler M, Muzzi F, et al. The effects of intense pulsed light (IPL) on blood vessels investigated by mathematical modeling. Lasers Surg Med. 2007;39:132–9.

    Article  PubMed  Google Scholar 

  46. Goldman MP, Eckhouse S. Photothermal sclerosis of leg veins. ESC Medical Systems, LTD Photoderm VL Cooperative Study Group [see comments]. Dermatol Surg. 1996;22(4):323–30.

    Article  CAS  PubMed  Google Scholar 

  47. Galeckas KJ. Update on lasers and light devices for the treatment of vascular lesions. Semin Cutan Med Surg. 2008;27:276–84.

    Article  CAS  PubMed  Google Scholar 

  48. Trelles MA, Weiss R, Moreno-Moragas J, Romero C, Vélez M, Alvarez X. Treatment of leg veins with combined pulsed dye and Nd:YAG lasers: 60 patients assessed at 6 months. Lasers Surg Med. 2010;42(9):609–14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Weiss MD, FAAD, FACPh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Falto-Aizpurua, L.A., Arora, H., Weiss, R.A. (2014). Laser Treatment for Spider Veins. In: Nouri, K. (eds) Handbook of Lasers in Dermatology. Springer, London. https://doi.org/10.1007/978-1-4471-5322-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5322-1_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5321-4

  • Online ISBN: 978-1-4471-5322-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics