Skip to main content

Advertisement

Log in

Argon ion laser and halogen lamp activation of a dark and light resin composite: microhardness after long-term storage

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate in vitro light activation of the nano-filled resin composite Vita shade A1 and A3 with a halogen lamp (QTH) and argon ion laser by Knoop microhardness profile. Materials and methods: Specimens of nanofilled composite resin (Z350-3 M-ESPE) Vita shade A1 and A3 were prepared with a single increment inserted in 2.0-mm-thick and 3-mm diameter disc-shaped Teflon mold. The light activation was performed with QTH for 20 s (with an intensity of approximately 1,000 mW/cm2 and 700 mW/cm2) and argon ion laser for 10 s (with a power of 150 mW and 200 mW). Knoop microhardness test was performed after 24 h and 6 months. The specimens were divided into the 16 experimental groups (n = 10), according to the factors under study: photoactivation form, resin shade, and storage time. Knoop microhardness data was analyzed by a factorial ANOVA and Tukey´s tests at the 0.05 level of significance. Results: Argon ion laser was not able to photo-activate the darker shade of the nanofilled resin composite evaluated but when used with 200 mW it can be as effective as QTH to photo-activate the lighter shade with only 50% of the time exposure. After 6 months storage, an increase in the means of Knoop microhardness values were observed. Conclusions: Light-activation significantly influenced the Knoop microhardness values for the darker nanofilled resin composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yap AU, Soh MS, Han TT, Siow KS (2004) Influence of curing lights and modes on cross-link density of dental composites. Oper Dent 29:410–415

    PubMed  Google Scholar 

  2. Knezevic A, Zeljezic D, Kopjar N, Tarle Z (2008) Cytotoxicity of composite materials polymerized with LED curing units. Oper Dent 33:23–30

    Article  PubMed  Google Scholar 

  3. Goldberg M (2008) In vitro and in vivo studies on the toxicity of dental resin components: a review. Clin Oral Investig 12:1–8

    Article  PubMed  Google Scholar 

  4. Pearson GJ, Longman CM (1989) Water sorption and solubility of resin-based materials following inadequate polymerization by a visible-light curing system. J Oral Rehab 16:57–61

    Article  CAS  Google Scholar 

  5. Herbstrith Segundo RM, Gonçalves Mota E, Balbinot CE, Lopes Bondan J, Silva Oshima HM (2008) Influence of storage solution and curing method on a microhybrid composite microhardness. Minerva Stomatol 57:41–46

    CAS  PubMed  Google Scholar 

  6. Leloup G, Holvoet PE, Bebelman S, Devaux J (2002) Raman scattering determination of the depth of cure of light-activated composites: influence of different clinically relevant parameters. J Oral Rehabil 29:510–515

    Article  CAS  PubMed  Google Scholar 

  7. Shortall AC (2005) How source and product shade influence cure depth for a contemporary composite. J Oral Rehabil 32:906–911

    Article  CAS  PubMed  Google Scholar 

  8. Rode KM, Freitas P, Lloret PR, Powell LG, Turbino ML (2009) Microhardness evaluation of a microhybrid composite resin light cured with halogen light, light-emitting diode and argon ion laser. Lasers Med Sci 24:87–92

    Article  PubMed  Google Scholar 

  9. Jeong TS, Kim YR, Kim JH, Kim HI, Kwon YH (2007) Effects of LEDs on microhardness and temperature rise of dental composite resins. Dent Mater J 26:838–844

    Article  PubMed  Google Scholar 

  10. Hubbezoğlu I, Bolayir G, Doğan OM, Doğan A, Ozer A, Bek B (2007) Microhardness evaluation of resin composite polymerized by three different light sources. Dent Mater J 26:845–853

    Article  PubMed  Google Scholar 

  11. Stansbury JW (2000) Curing dental resins and composites by photopolymerization. J Esthet Dent 12:300–308

    Article  CAS  PubMed  Google Scholar 

  12. Calheiros FC, Daronch M, Rueggeberg FA, Braga RR (2008) Influence of irradiant energy on degree of conversion, polymerization rate and shrinkage stress in an experimental resin composite system. Dent Mater 24:1164–1168

    Article  CAS  PubMed  Google Scholar 

  13. Junior RSA, Scherrer SS, Ferracane JL, Bona AD (2008) Microstructural characterization and fracture behavior of a microhybrid and a nanofill composite. Dent Mater 24:1281–1288

    Article  Google Scholar 

  14. Pradhan RD, Melikechi N, Eichmiller F (2002) The effect of irradiation wavelength bandwidth and spot size on the scraping depth and temperature rise in composite exposed to an argon laser or conventional quartz-tungsten-halogen source. Dent Mater 18:221–226

    Article  CAS  PubMed  Google Scholar 

  15. Powell GL, Blankenau RJ (2000) Laser curing of dental materials. Dent Clin North Am 44:923–930

    CAS  PubMed  Google Scholar 

  16. Hinoura K, Miyazaki M, Onose H (1993) Influence of argon laser curing on resin bond strength. Am J Dent 6:69–71

    CAS  PubMed  Google Scholar 

  17. Schneider LFJ, Pfeifer CSC, Consani S, Prahl SA, Ferracane JL (2008) Influence of photoinitiator type on the rate of polymerization, degree of conversion, hardness and yellowing of dental resin composites. Dent Mater 24:1169–1177

    Article  CAS  PubMed  Google Scholar 

  18. Aguiar FH, Lazzari CR, Lima DA, Ambrosano GM, Lovadino JR (2005) Effect of light curing tip distance and resin shade on microhardness of a hybrid resin composite. Braz Oral Res 19:302–306

    Article  PubMed  Google Scholar 

  19. Gritsch K, Souvannasot S, Schembri C, Farge P, Grosgogeat B (2008) Influence of light energy and power density on the microhardness of two nanohybrid composites. Eur J Oral Sci 116:77–82

    Article  PubMed  Google Scholar 

  20. Gomes GM, Calixto AL, Santos FA, Gomes OM, D'Alpino PH, Gomes JC (2006) Hardness of a bleaching-shade resin composite polymerized with different light-curing sources. Braz Oral Res 20:337–341

    PubMed  Google Scholar 

  21. Vlacic J, Meyers IA, Walsh LJ (2007) Laser-activated fluoride treatment of enamel as prevention against erosion. Aust Dent J 52:175–180

    Article  CAS  PubMed  Google Scholar 

  22. Zach L, Coeh G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530

    Article  CAS  PubMed  Google Scholar 

  23. Khosroshahi ME, Atai M, Nourbakhsh MS (2008) Photopolymerization of dental resin as restorative material using an argon laser. Lasers Med Sci 23:399–406

    Article  CAS  PubMed  Google Scholar 

  24. Shimura R, Nikaido T, Yamauti M, Ikeda M, Tagami J (2005) Influence of curing method and storage condition on microhardness of dual-cure resin cements. Dent Mater J 24:70–75

    CAS  PubMed  Google Scholar 

  25. Schulze KA, Marshall SJ, Gansky SA, Marshall GW (2003) Color stability and hardness in dental composites after accelerated aging. Dent Mater 19:612–619

    Article  CAS  PubMed  Google Scholar 

  26. Kanchanavasita W, Anstice HM, Pearson GJ (1998) Long-term surface micro-hardness of resin modified glass-ionomers. J Dent 26:707–712

    Article  CAS  PubMed  Google Scholar 

  27. Mayworm CD, Camargo SS Jr, Bastian FL (2008) Influence of artificial saliva on abrasive wear and microhardness of dental composites filled with nanoparticles. J Dent 36:703–710

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Special Laboratory of Lasers in Dentistry (LELO) of the University of São Paulo (Brazil) for the use of the argon ion Laser, Dr. Anderson Zanardi de Freitas (and staff) from Laser and Application Center, Energy and Nuclear Research Institute, São Paulo (Brazil) for their assistance and express their gratitude to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support for this research and to 3M ESPE for material support.

Disclosure

The authors have no interest in any of the companies or products mentioned in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Cassoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassoni, A., Ferla, J.d.O., Albino, L.G.B. et al. Argon ion laser and halogen lamp activation of a dark and light resin composite: microhardness after long-term storage. Lasers Med Sci 25, 829–834 (2010). https://doi.org/10.1007/s10103-009-0708-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-009-0708-x

Keywords

Navigation