Skip to main content

Advertisement

Log in

Photopolymerization of dental resin as restorative material using an argon laser

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The effect of the 488-nm wavelength of argon laser at different power densities and irradiation times on the degree of conversion (DC), temperature rise, water sorption, solubility, flexural strength, flexural modulus, and microhardness of bisphenole A glycol dimethacrylate and triethylen glycol dimethacrylate with a mass ratio of 75:25 was studied. Camphorquinone and N,N′-dimethyl aminoethyl methacrylate were added to the monomer as a photo initiator system. The DC% of the resin was measured using Fourier transform infrared spectroscopy. The maximum DC% (50%), which was reached in 20 s, and temperature rise because of the reaction (13.5°C) were both higher at 1075 than 700 mW/cm2. Water sorption and solubility were measured according to ISO4049, which in our case were 23.7 and 2.20 μg/mm3 at 1075 mW/cm2, respectively. A flexural modulus of 1.1 GPa and microhardness of 19.6 kg/mm2 were achieved above the power density. No significant difference was observed (i.e., p > 0.05) for water sorption and flexural strength at 700 and 1075 mW/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sheldon N, Sokol H (1984) Dental drill noise and hearing conservation. NY State Dental J 50:557–561

    CAS  Google Scholar 

  2. Powell G, Higuci W, Fox J (1992) Argon laser effect on demineralization of human enamel. SPIE 1643:374–380

    Article  Google Scholar 

  3. Koort H, Frentzen M (1992) YAG-lasers in restorative dentistry: a histological investigation. SPIE 1643:403–411

    Article  Google Scholar 

  4. Pelagali J, Gimble C, Hansen R, Swett A (1997) Investigational study of the Er:YAG laser versus dental drill for caries removal and cavity preparation—phase I. J Clin Laser Med Surg 15:109–115

    Google Scholar 

  5. Keller U, Hibst R, Geurtsen W, Schilke R et al (1998) Er:YAG laser application in caries therapy. Evaluation f patient perception and acceptance. J Dent 26:649–656

    Article  PubMed  CAS  Google Scholar 

  6. Brnett J, Conceicao E, Pelinos J (2003) Comparative study f influence on tensile bond strength f a composite3 to dentin using Er:YAG laser, air turbine for preparation of cavities. J Clin Laser Med Surg 19:199–202

    Article  Google Scholar 

  7. Craig R (ed) (1997) Restorative dental materials. 10st edn. Mosby, St. Louis, MO

    Google Scholar 

  8. Sideridou I, Tserki V, Papanastasiou G (2002) Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 23:1819–1829

    Article  PubMed  CAS  Google Scholar 

  9. Lovell L, Newman S, Donaldson M, Bowman C (2003) The effect of light intensity on double bond conversion and flexural strength of model unfilled dental resin. Dent Mater 19:458–465

    Article  PubMed  CAS  Google Scholar 

  10. Mills R, Jandt K (1998) Blue LEDs for curing polymer based dental filling materials. LEOS Newsl 12:9–10

    Google Scholar 

  11. Deb S, Sehmi H (2003) A comparative study of the properties of dental resin composites polymerized with plasma and halogen light. Dent Mater 19:517–522

    Article  PubMed  CAS  Google Scholar 

  12. Peutzfeld A, Sahafi A, Asmussen E (2000) Characterize of resin composites polymerized with plasma arc curing units. Dent Mater 1:330–336

    Article  Google Scholar 

  13. Miller B, Nicholson J (2001) Effect of curing with a plasma light on the properties of polymerizable dental restorative material. J Oral Rehabil 28:549–552

    Article  Google Scholar 

  14. Fano L, Ma W, Marcoli P, Pizzi S (2002) Polymerization of dental composite resins using plasma light. Biomaterials 23:1011–1015

    Article  PubMed  CAS  Google Scholar 

  15. Lloret PR, Rode KM, Turbino ML (2004) Dentine bond strength of a composite resin polymerized with conventional light and argon laser. Pesqui Odontol Bras 18:271–275

    Google Scholar 

  16. Fleming M, Mailet W (1999) Photopolymerization of composite resin using the argon laser. Clin Pract 65:447450

    Google Scholar 

  17. Kelsey WP, Powell GL, Blankenau RJ, Whisenat BK (1989) Enhancement of physical properties of resin restorative materials by laser polymerization. Lasers Surg Med 9:623–627

    Article  PubMed  Google Scholar 

  18. Powell GL, Blankenau RJ (1994) Argon laser polymerization of composite blue lines vs. multilines. J Clin Laser Med Surg 12(6):325–326

    Google Scholar 

  19. Powell GL, Ellios R, Blankenau RJ, Schouten JR (1995) Evaluation of argon laser and conventional light-cured composites. J Clin Laser Med Surg 13(5):315–317

    Google Scholar 

  20. Powell GL, Blankenau RJ (1996) Effect of argon laser curing on dentin shear bond strengths. SPIE 2672:2406–2408

    Google Scholar 

  21. Cassoni A, Youssef MN, Prokopowitsch I (2005) Bond strength of a dentin bonding system using two techniques of polymerization: visible-light and argon laser. Photomed Laser Surg 23(5):493–497

    Article  PubMed  Google Scholar 

  22. Conrado L, Munin E, Zangaro R (2004) Root apex sealing with different filling materials photopolymerized with fiber optic delivered argon laser light. Lasers Med Sci 19:95–99

    Article  PubMed  Google Scholar 

  23. Kelsey W, Blankenau R, Powell G, Barkmeier W (1989) Enhancement of physical properties of resin restorative materials by laser polymerization. Lasers Surg Med 9:623–627

    Article  PubMed  Google Scholar 

  24. Sankarapandian M, Shobha H (1997) Characterization of some aromatic dimethacrylates for dental composite applications. J Mater Sci Mater Med 8:465–468

    Article  PubMed  CAS  Google Scholar 

  25. Lovell L, Lu H, Elliott J, Stanburg J, Bowman C (2001) The effect of cure rate on the mechanical properties of dental resins. Dent Mater 17:504–511

    Article  PubMed  CAS  Google Scholar 

  26. Philips R (1982) Skinners science of dental materials, 8th edn. Saunders, Philadelphia, p 42

    Google Scholar 

  27. Soares MA, Pinheiro A (2003) Degree of conversion of composite resin: a Raman study. J Clin Laser Med Surg 6:357–362

    Article  Google Scholar 

  28. Emami N, Soderholm K, Berglund L (2003) Effect of light power density variations on bulk curing properties of dental composites. J Dent 31:189–196

    Article  PubMed  CAS  Google Scholar 

  29. Sun G, Chae K (2000) Properties of 2,3 butanedione and 1phenyl-1,2—propanedione as new photosensitizer for visible light cured dental resin composites. Polymer 41:6202–6212

    Google Scholar 

  30. Selli E, Bellobono I (1993) Photopolymerization of multifunctional monomers: kinetic aspects, in radiation curing in polymer science and technology, vol. III. Elsevier, Amsterdam, pp 1–32

    Google Scholar 

  31. Barszezewska-Rybarek I, Gibas M, Kurcok M (2000) Evaluation of the network parameters in aliphatic poly urethane dimethacrylate bye dynamic thermal analysis. Polymer 41:3129–3135

    Article  Google Scholar 

  32. Lovell LG, Newman S, Bowman C (1999) The effects of light intensity, temperature and comonomer composition on the polymerization behavior of dimethacrylate dental resin. J Dent Res 78(8):1469–1476

    Article  PubMed  CAS  Google Scholar 

  33. Kalachandra S, Kusy R (1991) Composition of water sorption by methacrylate and dimethacrylate monomers and their corresponding polymers. Polymer 32:2428–2434

    Article  CAS  Google Scholar 

  34. Elliot J, Lovell L, Bowman C (2001) Primary cyclization in the polymerization of Bis-GMA and TEGDMA; a modeling approach to understanding the cure of dental resins. Dent Mater 17:221–229

    Article  Google Scholar 

  35. Rey L, Duchet J, Galy J, Sautereau H et al (2002) Structural heterogeneities and mechanical properties of vinyl dimethacrylate networks synthesized by thermal free radical polymerization. Polymer 43:4375–4384

    Article  CAS  Google Scholar 

  36. Vrentas J, Duda J (1977) Diffusion in polymer-solvent systems. J Polym Sci Polym Ed 15:403–416

    Article  CAS  Google Scholar 

  37. Vrentas J, Duda J (1977) A free volume interpretation of the influence of the glass transition in diffusion in amorphous polymers. J Polym Sci 22:2325–2339

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Khosroshahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khosroshahi, M.E., Atai, M. & Nourbakhsh, M.S. Photopolymerization of dental resin as restorative material using an argon laser. Lasers Med Sci 23, 399–406 (2008). https://doi.org/10.1007/s10103-007-0487-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-007-0487-1

Keywords

Navigation