Skip to main content
Log in

Effects of a specially pulsed electric field on an animal model of wound healing

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The possible beneficial effects of a specially pulsed electric field (PEF) on wound healing were investigated in this study. We made a pair of triangular, full-thickness, dorsal incisions in the skin of 32 healthy male mice (one control group and three exposure groups). The treatment groups were kept between parallel plates in a partially insulated exposed environment. Group I was exposed to an electric field intensity of 10 kV/m, group II was exposed to 1.9 kV/m, and group III was exposed to 0.9 kV/m. PEFs were applied to the subjects for 20–22 h and 8 consecutive days. We determined the differences in wound recovery between the groups based on the following parameters: collagen fiber density, inflammatory infiltration density, capillary proliferation, and existence of exudates. We found that a 0.9 kV/m–1.9 kV/m chopped direct current (DC) electric field with a 30 µs repetition time favorably affected collagen synthesis and wound recovery. Despite the intensity of 0.9–1.9 kV/m, PEF accelerated healing, but 10 kV/m decelerated this recovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Faurie C, Golzio EP, Teissie J, Rols MP (2005) Electric field-induced cell membrane permeabilization and gene transfer: theory and experiments. Eng Life Sci 5:179–186

    Google Scholar 

  2. Cho MR, Thatte HS, Lee RC, Golon DE (2000) Integrin-dependent human macrophage migration induced by oscillatory electrical stimulation. Ann Biomed Eng 28:234–243. doi:10.1114/1.263

    Article  PubMed  CAS  Google Scholar 

  3. Eberhardt A, Szczypiorski P, Korytowski G (1986) Effects of transcutaneous electrostimulation on the cell composition of skin exudate. Acta Physiol Pol 37:41–46

    PubMed  CAS  Google Scholar 

  4. Aydin MA, Comlekci S, Ozguner M, Cesur G, Nasir S, Aydin ZD (2006) The influence of continuous exposure to 50 Hz electric field on nerve regeneration in a rat peroneal nerve crush injury model. Bioelectromagnetics 27:401–413. doi:10.1002/bem.20221

    Article  PubMed  Google Scholar 

  5. Neumann E, Sowers AE, Jordan CA (1989) Electroporation and electrofusion in cell biology. Plenum Press, New York, pp 100–120

    Google Scholar 

  6. Teissie J (2002) Recent biotechnological developments of electropulsation. A prospective review. Bioelectrochemistry 55:107–112. doi:10.1016/S1567-5394(01)00138-4

    Article  PubMed  CAS  Google Scholar 

  7. Cheng K, Tarjan PP, Mertz PM (1996) Conductivities of pig dermis and subcutaneous fat measured with rectangular pulse electrical current. Bioelectromagnetics 17:458–466. doi:10.1002/(SICI)1521-186X(1996)17:6<458::AID-BEM5>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  8. Braddock M, Campbell CJ, Zuder D (1999) Current therapies for wound healing: electrical stimulation, biological therapeutics, and the potential for gene therapy. Int J Dermatol 38:808–817. doi:10.1046/j.1365-4362.1999.00832.x

    Article  PubMed  CAS  Google Scholar 

  9. Taskan I, Ozyazgan I, Tercan M, Yildiz-Kardas H, Balkanli S, Saraymer R, Zorlu U, Ozugul Y (1997) A comparative study of the effect of ultrasound and electrostimulation on wound healing in rats. Plast Reconstr Surg 100:966–972. doi:10.1097/00006534-199709001-00020

    Article  PubMed  CAS  Google Scholar 

  10. Canseven AG, Atalay NS (1996) Is it possible to trigger collagen synthesis by electric current in skin wounds?. Indian J Biochem Biophys 33:223–227

    PubMed  CAS  Google Scholar 

  11. Okudan B, Keskin AU, Aydin MA, Cesur G, Comlekci S, Suslu H (2006) DEXA analysis on the bones of rats exposed in utero and neonatally to static and 50 Hz electric fields. Bioelectromagnetics 27:589–592. doi:10.1002/bem.20237

    Article  PubMed  Google Scholar 

  12. Eraslan G, Akdogan M, Bilgili A, Kanbur M, Sahindokuyucu F (2002) The effects of an electromagnetic field (60–90 Hz and 5 mT) on blood electrolyte levels in diurnal rhythm (in Turkish). Turk J Vet Anim Sci 26:1243–1247

    Google Scholar 

  13. Irmak MK, Oztas E, Yagmurca M, Fadillioglu E, Bakir B (2003) Effects of electromagnetic radiation from cellular telephone on epidermal Merkel cells. J Cutan Pathol 30:135–138. doi:10.1046/j.0303-6987.2003.00002.x

    Article  PubMed  Google Scholar 

  14. Milgram J, Shahar R, Levin-Harrus T, Kass P (2004) The effect of short, high intensity magnetic field pulses on the healing of skin wounds in rats. Bioelectromagnetics 25:271–277. doi:10.1002/bem.10194

    Article  PubMed  Google Scholar 

  15. Vodovnik L, Karba R (1992) Treatment of chronic wounds by means of electric and electromagnetic fields. Med Biol Eng 30:257–266. doi:10.1007/BF02446963

    Article  CAS  Google Scholar 

  16. Lee PY, Chesnoy S, Huang L (2004) Electroporatic delivery of TGF-B1 gene works synergistically with electric therapy to enhance diabetic wound healing in db/db mice. J Invest Dermatol 123:791–798. doi:10.1111/j.0022-202X.2004.23309.x

    Article  PubMed  CAS  Google Scholar 

  17. Marriapan MR, Williams JG, Prager MD, Eberhart RC (1999) "Engineering" the wound healing process. IEEE Trans Eng Med Biol 18:22–26

    Google Scholar 

  18. Falanga V (1993) Growth factors and wound healing. Dermatol Clin II:667–675

    Google Scholar 

  19. Nisser NN, Polverini PJ, Koch AE (1998) Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol 152:1445–1452

    Google Scholar 

  20. Liu LM, Cleary SF (1995) Absorbed energy distribution from radiofrequency electromagnetic radiation in a mammalian cell model: effect of membrane-bound water. Bioelectromagnetics 16:160–171. doi:10.1002/bem.2250160304

    Article  PubMed  CAS  Google Scholar 

  21. Culling CFA, Reid PE, Dunn WL (1976) A new histochemical method for the identification and visualization of both side chain acylated and non-acylated sialic acids. J Histochem Cytochem 24:1225–1230

    PubMed  CAS  Google Scholar 

  22. Bancroft JD, Stevens A, Turner DR (1996) (Van Gieson, 1899) Theory and practice of histological techniques. Churchill Livingstone, Hong Kong, pp 126–127

    Google Scholar 

  23. Guler G, Atalay NS (1996) Biological effects of electric field (in Turkish). J Turk Chamb Eng Archit (TMMOB), 406

  24. Orida N, Feldman JD (1982) Directional protrusive pseudopodial activity and motility in macrophages induced by extracellular electric fields. Cell Motil 2:243–255. doi:10.1002/cm.970020305

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selcuk Comlekci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cinar, K., Comlekci, S. & Senol, N. Effects of a specially pulsed electric field on an animal model of wound healing. Lasers Med Sci 24, 735–740 (2009). https://doi.org/10.1007/s10103-008-0631-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-008-0631-6

Keywords

Navigation