Skip to main content
Log in

Histological Assessment of the Laboratory Rats Skin after Thermal Damages Treated with Nanosecond Microwave Pulses

  • ANIMAL AND HUMAN PHYSIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The effect of nanosecond repetitive pulsed microwaves (RPMs, 10 GHz, 100 ns pulse duration, 8 Hz pulse repetition rate, 140 W/cm2 peak power flux density (pPFD)) on the treatment of a model thermal burn of the skin of laboratory rats was investigated. It is established that after 4-fold local irradiation, the rate of wound healing increases; it is due to the accelerated formation of granulation tissue and a decrease in the thickness of the scab, which ensures scarless healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Alekseev, A.A., Bobrovnikov, A.E., and Malyutina, N.B., Emergency medical care after a burn injury, Med. Alfavit, 2016, vol. 2, no. 15 (278), pp. 6–12.

  2. Athanasiou, A., Karkambounas, S., and Batistatou, A., The effect of pulsed electromagnetic fields on secondary skin wound healing: an experimental study, Bioelectromagnetics, 2007, vol. 28, pp. 362–368.

    Article  PubMed  Google Scholar 

  3. Atiyeh, B.S. and Costagliola, M., Cultured epithelial autograft (CEA) in burn treatment: three decades later, Burns, 2007, vol. 33, pp. 405–413.

    Article  PubMed  Google Scholar 

  4. Bainbridge, P., Wound healing and the role of fibroblasts, J. Wound Care, 2013, vol. 22, no. 8, pp. 407–412.

    Article  CAS  PubMed  Google Scholar 

  5. Bessonov, A.E., Chemeris, N.K., and Gapeev, A.B., Reparative regeneration of tissues under the influence of electromagnetic waves of the millimeter, infrared, and part of the visible ranges generated by the Minitag therapeutic apparatus R&D NCIM LIDO, in Fiziko-khimicheskie osnovy informatsionnoi meditsiny (Physico-Chemical Basics of Information Medicine), Pushchino: Inst. Biol. Kletki, 2000, p. 18.

  6. Exbrayat, J.M., Classical Methods of Visualization. Histochemical and Cytochemical Methods of Visualization, Boca Raton: CRC Press, Taylor and Francis Group, 2013.

    Book  Google Scholar 

  7. Fox, A., Smythe, J., Fisher, N., Tyler, M.P.H., Mcgrou-ther, D.A., Watt, S.M., and Harris, A.L., Mobilization of endothelial progenitor cells into the circulation in burned patients, Br. J. Surg., 2008, vol. 95, pp. 244–251.

    Article  CAS  PubMed  Google Scholar 

  8. Gapeev, A.B., Mechanisms of antiinflammatory and antitumor action of low-intensity electromagnetic radiation of extremely high frequencies, Millimetr. Volny Biol. Med., 2012, no. 3, p. 3.

  9. Gapeev, A.B. and Chemeris, N.K., Mechanisms of the biological action of electromagnetic radiation of extremely high frequencies at the organismal level, Biomed. Radioelektron., 2007, nos. 8–9, pp. 30–46.

  10. Gostyukhina, A.A., Samoilova, A.V., Bol’shakov, M.A., Mochalova, V.M., Zaitsev, K.V., Kutenkov, O.P., and Rostov, V.V., Stimulation of burn wound healing in rats by nanosecond repetitive pulsed microwave radiation, Biol. Bull. (Moscow), 2022, vol. 49, no. 5, pp. 532–537.

    Article  CAS  Google Scholar 

  11. Knyazeva, I.R., Medvedev, M.A., Zharkova, L.P., Gostyukhina, A.A., Kutenkov, O.P., Rostov, V.V., and Bol’shakov, M.A., Effect of nanosecond repetitively pulsed microwave radiation on regeneration processes, Byull. Sib. Med., 2011, no. 6, pp. 109–113.

  12. Korzhevskii, D.E., Osnovy gistologicheskoi tekhniki (Fundamentals of Histological Technique), St. Petersburg: SpetsLit, 2010. http://sun.tsu.ru/limit/2016/000550786/ 000550786.pdf.

  13. Labus, W., Kitala, D., Klama-Baryla, A., Szapski, M., Kraut, M., Smętek, W., Glik, J., Kucharzewski, M., Rojczyk, E., Utrata-Wesolek, A., Trzebicka, B., Szeluga, U., Sobota, M., Poloczek, R., and Kamiński, A., Influence of electron beam irradiation on extracellular matrix of the human allogeneic skin grafts, J. Biomed. Mater. Res. B: Appl. Biomater., 2022, vol. 110, no. 3, pp. 547–563. https://doi.org/10.1002/jbm.b.34934

    Article  CAS  PubMed  Google Scholar 

  14. Lushnikov, K.V., Gapeev, A.B., and Shumilina, Yu.V., Suppression of cell-mediated immune response and nonspecific inflammation on exposure to extremely high frequency electromagnetic radiation, Biophysics (Moscow), 2003, vol. 38, no. 5, pp. 856–863.

    Google Scholar 

  15. Pilla, A., Proposed electrochemical mechanism of emf modulation of tissue repair, in The Bioelectromagnetic Society 30th Annual Meeting, Abstract Collection, San Diego: California, 2008, p. 147.

  16. Rodrigo, S.M., Cunha, A., Pozza, D.H., Blaya, D.S., Moraes, J.F., Blessmann, J.B., Weber, J.B., and de Oliveira, M.G., Analysis of the systemic effect of red and infrared laser therapy on wound repair, Photomed. Laser Surg., 2009, vol. 27, no. 6, pp. 929–935. https://doi.org/10.1089/pho.2008.2306

    Article  PubMed  Google Scholar 

  17. Sakallioglu, E.A., Basaran, O., Ozdemir, B.H., Arat, Z., Yucel, M., and Haberal, M., Local and systemic interactions related to serum transforming growth factor-b levels in burn wounds of various depths, Burns, 2006, vol. 32, pp. 980–985.

    Article  PubMed  Google Scholar 

  18. Samoylova, A.V., Gostyukhina, A.A., Rostov, V.V., Bolshakov, M.A., Zaitsev, K.V., and Kutenkov, O.P., Dynamics of burn wound healing in rats irradiated by nanosecond microwave pulses, Biomed. J. Sci. Tech. Res., 2020, vol. 32, no. 2, pp. 24791–24792.

    Google Scholar 

  19. Shpichka, A., Butnaru, D., Bezrukov, E.A., Sukhanov, R.B., Atal, A., Burdukovskii, V., Zhang, Yu., and Timashev, P., Skin tissue regeneration for burn injury, Stem Cell Res. Ther., 2019, vol. 10, no. 94. https://doi.org/10.1186/s13287-019-1203-3

  20. Strauch, B., Herman, C., Dabb, R., Ignarro, L.J., and Pilla, A.A., Evidence-based use of pulsed electromagnetic field therapy in clinical plastic surgery, Aesthet. Surg. J., 2009, no. 29 (2), pp. 135–143. https://doi.org/10.1016/j.asj.2009.02.001

  21. Tracy, L.E., Minasia, R.A., and Caterson, E.J., Extracellular matrix and dermal fibroblast function in the healing wound, Adv. Wound Care, 2016, vol. 5, pp. 119–136.

    Article  Google Scholar 

  22. Wang, J.H.C., Thampatty, B.P., Lin, J.S., and Im, H.J., Mechanoregulation of gene expression in fibroblasts, Gene, 2007, vol. 391, pp. 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wood, F.M., Kolybaba, M.L., and Allen, P., The use of cultured epithelial autograft in the treatment of major burn injuries: a critical review of the literature, Burns, 2006, vol. 32, pp. 395–401.

    Article  CAS  PubMed  Google Scholar 

  24. Yartsev, V.V., Osnovy gistologicheskoi tekhniki dlya zoologov: uchebno-metodicheskoe posobie dlya biologicheskikh spetsial’nostei vuzov (dlya studentov, obuchayushchikhsya po napravleniyu 06.04.01 Biologiya, in avt.-sost.). M-vo nauki i vyssh. obrazovaniya, Nats. Issled. Tomsk. Gos. Univ. (Fundamentals of Histological Technique for Zoologists: A Teaching Aid for Biological Specialties of Universities (For Students Enrolled in the Direction 06.04.01 Biology/Ed.-Comp.), Ministry of Science and Higher Education, National Research Tomsk State University)), Tomsk: Tomsk. Gos. Univ., 2019. http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000660316

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gostyukhina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. The study was performed in accordance with the ethical standards of work with laboratory animals (ETS no. 123, 2007) and the sanitary rules for the design, equipment and maintenance of experimental biological clinics (Rules of Laboratory Practice in the Russian Federation). The research has been performed on the basis of permission of the Bioethics Commission of the Biological Institute of the NR TSU (Protocol no. 15 from June 14, 2019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gostyukhina, A.A., Yartsev, V.V., Samoylova, A.V. et al. Histological Assessment of the Laboratory Rats Skin after Thermal Damages Treated with Nanosecond Microwave Pulses. Biol Bull Russ Acad Sci 50, 973–977 (2023). https://doi.org/10.1134/S1062359023601465

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023601465

Keywords:

Navigation