Skip to main content

Advertisement

Log in

Low-level laser irradiation facilitates fibronectin and collagen type I turnover during tooth movement in rats

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effects of low-level laser (LLL) irradiation on the turnover of fibronectin and collagen type I in periodontal tissue during tooth movement in rats by immunohistochemistry. Thirty male Sprague–Dawley rats aged 15 weeks were assigned to either an experimental group (n = 15) that underwent LLL irradiation during tooth movement, or a control group (n = 15). In the experimental group, the gallium–aluminum–arsenide (Ga-Al-As) diode LLL (wavelength 808 nm; output 96 mW) was used to irradiate three areas on both the palatal side and the labial side of the maxillary incisor. The radiation was administered by the contact method for 10 s at 0.83 J/cm2 energy dose, once a day for 7 days. Total energy dose over the complete schedule was 34.86 J/cm2. The animals were killed on days 1, 3, 7, 14 and 21. There was no difference between the two groups in the amount of tooth movement. The immunohistochemistry results showed that the expression of fibronectin and collagen type I in the experimental group had significantly increased from day 1, with a more even distribution than in the control group, and that this difference was maintained until the end of the experiment. These results suggest that LLL irradiation facilitates the reorganization of the connective tissues during tooth movement in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yamasaki K, Shibata Y, Fukuhara T (1982) The effect of prostaglandins on experimental tooth movement in monkeys (Macaca fuscata). J Dent Res 61:1444–1446

    CAS  PubMed  Google Scholar 

  2. Yamamoto T, Kawakami M, Kobayasi Y (1992) The effect of local application of 1,25-dihydroxycholecalciferol on osteoclast numbers in orthodontically treated rats. J Dent Res 71:53–59

    Google Scholar 

  3. Soma S, Iwamoto M, Higuchi Y, Kurisu K (1999) Effect of continuous infusion of PTH on experimental tooth movement. J Bone Miner Res 14:546–554 doi:10.1359/jbmr.1999.14.4.546

    Article  CAS  PubMed  Google Scholar 

  4. Pongsri B, Per R (1991) Root resorption after local injection of prostaglandin E2 during experimental tooth movement. Eur J Orthod 13:255–263

    Google Scholar 

  5. Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP (2004) Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg Med 34:260–265 doi:10.1002/lsm.20008

    Article  PubMed  Google Scholar 

  6. Pourzarandian A, Watanabe H, Ruwanpura SMPM, Aoki A, Ishikawa I (2005) Effect of low-level Er:Yag laser irradiation on cultured human gingival fibroblasts. J Periodontol 76:187–193 doi:10.1902/jop.2005.76.2.187

    Article  PubMed  Google Scholar 

  7. Kreisler M, Christoffers AB, Willerstausen B, d’Hoedt B (2003) Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol 30:353–358 doi:10.1034/j.1600-051X.2003.00001.x

    Article  PubMed  Google Scholar 

  8. Mester E, Mester AF, Mester A (1985) The biomedical effects of laser application. Lasers Surg Med 5:31–39 doi:10.1002/lsm.1900050105

    Article  CAS  PubMed  Google Scholar 

  9. Gerschman JA, Ruben J, Gebart-Eaglemont J (1994) Low level laser therapy for dentinal tooth hypersensitivity. Aust Dent J 39:353–357

    Article  CAS  PubMed  Google Scholar 

  10. Bensadoun RJ, Franqiun JC, Ciasis G, Darcourt V, Schubert MM, Viot M et al (1999) Low-energy He/Ne laser in the prevention of radiation-induced mucositis. A multicenter phase III randomized study in patients with head and neck cancer. Support Care Cancer 7:244–252 doi:10.1007/s005200050256

    Article  CAS  PubMed  Google Scholar 

  11. Khullar SM, Brodin P, Barkvoll P, Haanaes HR (1996) Preliminary study of low-level laser for treatment of long-standing sensory aberrations in the inferior alveolar nerve. J Oral Maxillofac Surg 54:2–7 doi:10.1016/S0278-2391(96)90290-6

    Article  CAS  PubMed  Google Scholar 

  12. Khullar SM, Emami B, Westermark A, Haanaes HR (1996) Effect of low-level laser treatment on neurosensory deficits subsequent to sagittal split ramus osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 82:132–138 doi:10.1016/S1079-2104(96)80215-0

    Article  CAS  PubMed  Google Scholar 

  13. Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26:3503–3509 doi:10.1016/j.biomaterials.2004.09.033

    Article  CAS  PubMed  Google Scholar 

  14. Kim YD, Kim SS, Hwang DS et al (2007) Effect of low-level laser treatment after installation of dental titanium implant—immunohistochemical study of RANKL, RANK, OPG: an experimental study in rats. Lasers Surg Med 39:441–450 doi:10.1002/lsm.20508

    Article  PubMed  Google Scholar 

  15. Kim YD, Kim SS, Hwang DS et al (2007) Effect of low-level laser treatment after installation of dental titanium implant—immunohistochemical study of vascular endothelial growth factor: an experimental study in rats. Laser Phys Lett 4:681–685 doi:10.1002/lapl.200710036

    Article  Google Scholar 

  16. Saito S, Shimizu N (1997) Stimulatory effects of low-power laser irradiation on bone regeneration in mid-palatal suture during expansion in rat. Am J Orthod Dent Orthop 111:525–532 doi:10.1016/S0889-5406(97)70152-5

    Article  CAS  Google Scholar 

  17. Lim HM, Lew KK, Tay DK (1995) A clinical investigation of the efficacy of low level laser therapy in reducing orthodontic postadjustment pain. Am J Orthod Dentofacial Orthop 108:614–622 doi:10.1016/S0889-5406(95)70007-2

    Article  CAS  PubMed  Google Scholar 

  18. Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C (2006) Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res 9:38–43 doi:10.1111/j.1601-6343.2006.00338.x

    Article  CAS  PubMed  Google Scholar 

  19. Mussig E, Tomakidi P, Steinberg T (2005) Molecules contributing to the maintenance of periodontal tissues. J Orofac Orthop 66:422–433 doi:10.1007/s00056-005-0520-6

    Article  PubMed  Google Scholar 

  20. Pitaru S, Aubin JE, Bhargava U, Melcher AH (1987) Immunoelectron microscopic studies on the distributions of fibronectin and actin in a cellular dense connective tissue: the periodontal ligament of the rat. J Periodontal Res 22:64–74 doi:10.1111/j.1600-0765.1987.tb01541.x

    Article  CAS  PubMed  Google Scholar 

  21. Kapila YL, Lancero H, Johnson PW (1998) The response of periodontal ligament cells to fibronectin. J Periodontol 69:1008–1019

    CAS  PubMed  Google Scholar 

  22. Howard PS, Kucich U, Taliwal R, Korostoff JM (1998) Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J Periodontal Res 33:500–508

    CAS  PubMed  Google Scholar 

  23. Kim YD, Kim SS, Kim TG, Kim GC, Park SB, Son WS (2007) Effect of low-level laser treatment during tooth movement—immunohistochemical study of RANKL, RANK, OPG: an experimental study in rats. Laser Phys Lett 4:616–623 doi:10.1002/lapl.200710032

    Article  CAS  Google Scholar 

  24. Ren Y, Mantha JC, Juijpers-Jagtman A (2003) Optimum force magnitude for orthodontic tooth movement: a systematic literature review. Angle Orthod 73:86–92

    PubMed  Google Scholar 

  25. Ren Y, Maltha JC, Kuijpers-Jagtman A (2004) The rat as model for orthodontic tooth movement—a critical review and a proposed solution. Eur J Orthod 26:483–490 doi:10.1093/ejo/26.5.483

    Article  PubMed  Google Scholar 

  26. Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291 doi:10.1002/(SICI)1096–9101(2000)26:3<282::AID–LSM6>3.0.CO;2–X

    Article  CAS  PubMed  Google Scholar 

  27. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU (2004) Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med 35:117–120 doi:10.1002/lsm.20076

    Article  PubMed  Google Scholar 

  28. Seifi M, Shafeei HL, Daneshdoost S, Mir M (2007) Effects of two types of low-level laser wave lengths (850 and 630 nm) on the orthodontic tooth movements in rabbits. Lasers Med Sci 22:261–264 doi:10.1007/s10103-007-0447-9

    Article  PubMed  Google Scholar 

  29. von Breugel HHFI, Bär D (1992) Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo-biomodulation of human fibroblasts in vitro. Lasers Surg Med 12:528–537 doi:10.1002/lsm.1900120512

    Article  PubMed  Google Scholar 

  30. Saito S, Shimizu N (1997) Stimulatory effects of low-power laser irradiation on bone regeneration in mid-palatal suture during expansion in the rat. Am J Orthod Dent Orthop 111:525–532 doi:10.1016/S0889-5406(97)70152-5

    Article  CAS  Google Scholar 

  31. Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354 doi:10.1016/S8756-3282(97)00294-9

    Article  CAS  PubMed  Google Scholar 

  32. Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 129:469, e1–32

    Article  PubMed  Google Scholar 

  33. Hynes RO (1992) Integrins: versatility, modulation, and signal in cell adhesion. Cell 69:11–25 doi:10.1016/0092-8674(92)90115-S

    Article  CAS  PubMed  Google Scholar 

  34. Howard PS, Kucich U, Taliwal R, Korostoff JM (1998) Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblast. J Periodont Res 33:500–508

    Article  CAS  PubMed  Google Scholar 

  35. Yamamoto Y, Kono T, Kotani H, Kasai S, Mito M (1996) Effect of low-power laser irradiation on procollagen synthesis in human fibroblasts. J Clin Laser Med Surg 14:129–132

    CAS  PubMed  Google Scholar 

  36. Skinner SM, Gage JP, Wilce PA, Shaw RM (1996) A preliminary study of the effects of laser radiation on collagen metabolism in cell culture. Aust Dent J 41:188–192

    Article  CAS  PubMed  Google Scholar 

  37. Conlan MJ, Rapley JW, Cob CM (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23:492–496 doi:10.1111/j.1600-051X.1996.tb00580.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Sik Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YD., Kim, SS., Kim, SJ. et al. Low-level laser irradiation facilitates fibronectin and collagen type I turnover during tooth movement in rats. Lasers Med Sci 25, 25–31 (2010). https://doi.org/10.1007/s10103-008-0585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-008-0585-8

Keywords

Navigation