Skip to main content

Advertisement

Log in

Agave bagasse biorefinery: processing and perspectives

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Agave bagasse (AB) is the main solid waste generated by the tequila industry in Mexico, which is an environmental concern due to its considerable volume of production (377,000 Ton in 2016). AB is a lignocellulosic biomass that has been considered as a potential feedstock for different industrial uses in the framework of lignocellulosic biorefinery concept. The lignocellulosic biomass is a complex structure constituted by cellulose, hemicellulose and lignin. Therefore, for a complete waste revalorization, different processing steps would be required. In this work, the scientific advances toward the AB biorefinery composed by three sequential stages: pretreatment, treatment and biofuels production were reviewed. Moreover, the by-products of the process could also be recovered and used for the synthesis of value-added products. This integrative approach of AB in the conceptualized biorefinery generates positive impacts on environment as well as on local and regional economies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akuzawa M, Hori T, Haruta S et al (2011) Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Microb Ecol 61:595–605. doi:10.1007/s00248-010-9788-1

    Article  CAS  Google Scholar 

  • Alatriste-Mondragón F, Samar P, Cox HHJ et al (2006) Anaerobic codigestion of municipal, farm, and industrial organic wastes: a survey of recent literature. Water Environ Res 78:607–636. doi:10.2175/106143006X111673

    Article  CAS  Google Scholar 

  • Arreola-Vargas J, Celis LB, Buitrón G et al (2013) Hydrogen production from acid and enzymatic oat straw hydrolysates in an anaerobic sequencing batch reactor: performance and microbial population analysis. Int J Hydrogen Energy 38:13884–13894

    Article  CAS  Google Scholar 

  • Arreola-Vargas J, Alatriste-Mondragón F, Celis LB et al (2015a) Continuous hydrogen production in a trickling bed reactor by using triticale silage as inoculum: effect of simple and complex substrates. J Chem Technol Biotechnol 90:1062–1069. doi:10.1002/jctb.4410

    Article  CAS  Google Scholar 

  • Arreola-Vargas J, Ojeda-Castillo V, Snell-Castro R et al (2015b) Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield. Bioresour Technol 181:191–199. doi:10.1016/j.biortech.2015.01.036

    Article  CAS  Google Scholar 

  • Arreola-Vargas J, Flores-Larios A, González-Álvarez V et al (2016a) Single and two-stage anaerobic digestion for hydrogen and methane production from acid and enzymatic hydrolysates of Agave tequilana bagasse. Int J Hydrogen Energy 41:897–904. doi:10.1016/j.ijhydene.2015.11.016

    Article  CAS  Google Scholar 

  • Arreola-Vargas J, Jaramillo-Gante NE, Celis LB et al (2016b) Biogas production in an anaerobic sequencing batch reactor by using tequila vinasses: effect of pH and temperature. Water Sci Technol 73:550–556. doi:10.2166/wst.2015.520

    Article  CAS  Google Scholar 

  • Arriaga S, Rosas I, Alatriste-Mondragón F, Razo-Flores E (2011) Continuous production of hydrogen from oat straw hydrolysate in a biotrickling filter. Int J Hydrogen Energy 36:3442–3449. doi:10.1016/j.ijhydene.2010.12.019

    Article  CAS  Google Scholar 

  • Ávila-Lara AI, Camberos-Flores JN, Mendoza-Pérez JA et al (2015) Optimization of alkaline and dilute acid pretreatment of Agave bagasse by response surface methodology. Front Bioeng Biotechnol 3:1–10. doi:10.3389/fbioe.2015.00146

    Article  Google Scholar 

  • Badshah M, Lam DM, Liu J, Mattiasson B (2012) Use of an automatic methane potential test system for evaluating the biomethane potential of sugarcane bagasse after different treatments. Bioresour Technol 114:262–269. doi:10.1016/j.biortech.2012.02.022

    Article  CAS  Google Scholar 

  • Barakat A, Monlau F, Steyer JP, Carrere H (2012) Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresour Technol 104:90–99. doi:10.1016/j.biortech.2011.10.060

    Article  CAS  Google Scholar 

  • Barca C, Soric A, Ranava D et al (2015) Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: a review. Bioresour Technol 185:386–398. doi:10.1016/j.biortech.2015.02.063

    Article  CAS  Google Scholar 

  • Barrera I, Amezcua-Allieri MA, Estupiñan L et al (2016) Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: case of sugarcane and blue agave bagasses. Chem Eng Res Des 107:91–101. doi:10.1016/j.cherd.2015.10.015

    Article  CAS  Google Scholar 

  • Bensah EC, Mensah M (2013) Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int J Chem Eng. doi:10.1155/2013/719607

    Article  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169. doi:10.1016/j.carbpol.2013.01.033

    Article  CAS  Google Scholar 

  • Cardeña R, Valdez-Vazquez I, Buitrón G (2017) Effect of volatile fatty acids mixtures on the simultaneous photofermentative production of hydrogen and polyhydroxybutyrate. Bioprocess Biosyst Eng 40:231–239. doi:10.1007/s00449-016-1691-9

    Article  CAS  Google Scholar 

  • Carvajal JC, Gómez Á, Cardona CA (2016) Comparison of lignin extraction processes: economic and environmental assessment. Bioresour Technol 214:468–476. doi:10.1016/j.biortech.2016.04.103

    Article  CAS  Google Scholar 

  • Caspeta L, Caro-Bermúdez MA, Ponce-Noyola T, Martinez A (2014) Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl Energy 113:277–286. doi:10.1016/j.apenergy.2013.07.036

    Article  CAS  Google Scholar 

  • Cedeño-Cruz M (2003) Production of tequila from agave: historical influences and contemporary processes. In: Jacques KA, Lyons TP, Kelsall DR (eds) The alcohol textbook, 4th edn. Nottingham University Press, Nottingham, pp 223–245

  • Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950. doi:10.1016/j.biortech.2006.07.047

    Article  CAS  Google Scholar 

  • Chen K, Hao S, Lyu H et al (2017) Ion exchange separation for recovery of monosaccharides, organic acids and phenolic compounds from hydrolysates of lignocellulosic biomass. Sep Purif Technol 172:100–106. doi:10.1016/j.seppur.2016.08.004

    Article  CAS  Google Scholar 

  • Cheng HH, Whang LM, Chung MC, Chan KC (2016) Biological hydrogen and methane production from bagasse bioethanol fermentation residues using a two-stage bioprocess. Bioresour Technol 210:49–55. doi:10.1016/j.biortech.2015.12.084

    Article  CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421. doi:10.1016/j.enconman.2010.01.015

    Article  CAS  Google Scholar 

  • Contreras-Dávila CA, Méndez-Acosta HO, Arellano-García L et al (2017) Continuous hydrogen production from enzymatic hydrolysate of Agave tequilana bagasse: effect of the organic loading rate and reactor configuration. Chem Eng J 313:671–679. doi:10.1016/j.cej.2016.12.084

    Article  CAS  Google Scholar 

  • Corona-González RI, Varela-Almanza KM, Arriola-Guevara E et al (2016) Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor. Bioresour Technol 205:15–23. doi:10.1016/j.biortech.2015.12.081

    Article  CAS  Google Scholar 

  • Crespo MR, González DR, Rodríguez R et al (2013) Evaluación de la composta de bagazo de agave como componente de sustratos para producir plántulas de agave azul tequilero. Rev Mex Ciencias Agríc 4:1161–1173

    Article  Google Scholar 

  • CRT (2016) Consumo de Agave para tequila y tequila 100% de Agave. https://www.crt.org.mx/EstadisticasCRTweb/

  • da Silva EAB, Zabkova M, Araújo JD et al (2009) An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem Eng Res Des 87:1276–1292. doi:10.1016/j.cherd.2009.05.008

    Article  CAS  Google Scholar 

  • Dasari RK, Eric Berson R (2007) The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Appl Biochem Biotechnol 137–140:289–299. doi:10.1007/s12010-007-9059-x

    Article  Google Scholar 

  • de Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Industrial biorefineries & white biotechnology. Elsevier, pp 3–33. doi:10.1016/B978-0-444-63453-5.00001-X

  • De Matos CT, Garcia JC, Manfredi S, et al (2015) Environmental sustainability assessment of bioeconomy products and processes—progress report 1

  • Dussadee N, Reansuwan K, Ramaraj R (2014) Potential development of compressed bio-methane gas production from pig farms and elephant grass silage for transportation in Thailand. Bioresour Technol 155:438–441. doi:10.1016/j.biortech.2013.12.126

    Article  CAS  Google Scholar 

  • Elsamadony M, Tawfik A (2015) Potential of biohydrogen production from organic fraction of municipal solid waste (OFMSW) using pilot-scale dry anaerobic reactor. Bioresour Technol 196:9–16. doi:10.1016/j.biortech.2015.07.048

    Article  CAS  Google Scholar 

  • Espino E, Cakir M, Domenek S et al (2014) Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Ind Crops Prod 62:552–559. doi:10.1016/j.indcrop.2014.09.017

    Article  CAS  Google Scholar 

  • Fache M, Boutevin B, Caillol S (2016) Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng 4:35–46. doi:10.1021/acssuschemeng.5b01344

    Article  CAS  Google Scholar 

  • Gao K, Rehmann L (2016) Combined detoxification and in-situ product removal by a single resin during lignocellulosic butanol production. Sci Rep 6:1–10. doi:10.1038/srep30533

    Article  CAS  Google Scholar 

  • Garcia-Reyes RB, Rangel-Mendez JR (2009) Contribution of agro-waste material main components (hemicelluloses, cellulose, and lignin) to the removal of chromium (III) from aqueous solution. J Chem Technol Biotechnol 84:1533–1538. doi:10.1002/jctb.2215

    Article  CAS  Google Scholar 

  • Garcia-Reyes RB, Rangel-Mendez JR, Alfaro-De la Torre MC (2009) Chromium (III) uptake by agro-waste biosorbents: chemical characterization, sorption–desorption studies, and mechanism. J Hazard Mater 170:845–854. doi:10.1016/j.jhazmat.2009.05.046

    Article  CAS  Google Scholar 

  • Ghasimi DSM, Aboudi K, de Kreuk M et al (2016) Impact of lignocellulosic-waste intermediates on hydrolysis and methanogenesis under thermophilic and mesophilic conditions. Chem Eng J 295:181–191. doi:10.1016/j.cej.2016.03.045

    Article  CAS  Google Scholar 

  • Ghimire A, Frunzo L, Pirozzi F et al (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95. doi:10.1016/j.apenergy.2015.01.045

    Article  CAS  Google Scholar 

  • Gupta R, Mehta G, Kuhad RC (2016) Scale-up of abatement of fermentation inhibitors from acid hydrolysates for efficient conversion to ethanol as biofuel. J Chem Technol Biotechnol 91:1826–1834. doi:10.1002/jctb.4775

    Article  CAS  Google Scholar 

  • Hassan M, Ding W, Shi Z, Zhao S (2016a) Methane enhancement through co-digestion of chicken manure and thermo-oxidative cleaved wheat straw with waste activated sludge: a C/N optimization case. Bioresour Technol 211:534–541. doi:10.1016/j.biortech.2016.03.148

    Article  CAS  Google Scholar 

  • Hassan M, Ding W, Umar M et al (2016b) Methane enhancement through liquid ammonia fractionation of corn stover with anaerobic sludge. Energy Fuels 30:9463–9470. doi:10.1021/acs.energyfuels.6b01745

    Article  CAS  Google Scholar 

  • Hassan M, Ding W, Umar M et al (2017a) Methane enhancement and asynchronism minimization through co-digestion of goose manure and NaOH solubilized corn stover with waste activated sludge. Energy 118:1256–1263. doi:10.1016/j.energy.2016.11.007

    Article  CAS  Google Scholar 

  • Hassan M, Ding W, Umar M, Rasool G (2017b) Batch and semi-continuous anaerobic co-digestion of goose manure with alkali solubilized wheat straw: a case of carbon to nitrogen ratio and organic loading rate regression optimization. Bioresour Technol 230:24–32. doi:10.1016/j.biortech.2017.01.025

    Article  CAS  Google Scholar 

  • He Y, Pang Y, Liu Y et al (2008) Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels 22:2775–2781. doi:10.1021/ef8000967

    Article  CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi:10.1016/j.biortech.2008.05.027

    Article  CAS  Google Scholar 

  • Hernández-Salas JM, Villa-Ramírez MS, Veloz-Rendón JS et al (2009) Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour Technol 100:1238–1245. doi:10.1016/j.biortech.2006.09.062

    Article  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016

    Article  CAS  Google Scholar 

  • Íñiguez G, Martínez GA, Flores PA, Virgen G (2011) Utilización de subproductos de la industria tequilera. Parte 9. Monitoreo de la evolución del compostaje de dos fuentes distintas de bagazo de agave para la obtención de un substrato para jitomate. Rev Int Contam Ambient 27:47–59

    Google Scholar 

  • Iñiguez-Covarrubias G, Lange SE, Rowell RM (2001) Utilization of byproducts from the tequila industry: part 1: Agave bagasse as a raw material for animal feeding and fiberboard production. Bioresour Technol 77:25–32. doi:10.1016/S0960-8524(00)00137-1

    Article  Google Scholar 

  • Jiang D, Fang Z, Chin S et al (2016a) Biohydrogen production from hydrolysates of selected tropical biomass wastes with Clostridium butyricum. Sci Rep 6:27205. doi:10.1038/srep27205

    Article  CAS  Google Scholar 

  • Jiang L, Wu N, Zheng A et al (2016b) The integration of dilute acid hydrolysis of xylan and fast pyrolysis of glucan to obtain fermentable sugars. Biotechnol Biofuels 9:1–10. doi:10.1186/s13068-016-0612-0

    Article  CAS  Google Scholar 

  • Kafle GK, Kim SH (2013) Anaerobic treatment of apple waste with swine manure for biogas production: batch and continuous operation. Appl Energy 103:61–72. doi:10.1016/j.apenergy.2012.10.018

    Article  CAS  Google Scholar 

  • Kalliola A, Vehmas T, Liitiä T, Tamminen T (2015) Alkali-O2 oxidized lignin—a bio-based concrete plasticizer. Ind Crops Prod 74:150–157. doi:10.1016/j.indcrop.2015.04.056

    Article  CAS  Google Scholar 

  • Kestur GS, Flores-Sahagun THS, Dos Santos LP et al (2013) Characterization of blue agave bagasse fibers of Mexico. Compos Part A Appl Sci Manuf 45:153–161. doi:10.1016/j.compositesa.2012.09.001

    Article  CAS  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26. doi:10.1007/s00253-004-1642-2

    Article  CAS  Google Scholar 

  • La Licata B, Sagnelli F, Boulanger A et al (2011) Bio-hydrogen production from organic wastes in a pilot plant reactor and its use in a SOFC. Int J Hydrogen Energy 36:7861–7865. doi:10.1016/j.ijhydene.2011.01.096

    Article  CAS  Google Scholar 

  • Laka M, Chernyavskaya S (2007) Obtaining microcrystalline cellulose from softwood and hardwood pulp. BioResources 2:583–589

    CAS  Google Scholar 

  • Larsson S, Palmqvist E, Hahn-Hägerdal B et al (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159. doi:10.1016/S0141-0229(98)00101-X

    Article  CAS  Google Scholar 

  • Laure S, Leschinsky M, Fröhling M et al (2014) Assessment of an organosolv lignocellulose biorefinery concept based on a material flow analysis of a pilot plant. Cellul Chem Technol 48:793–798

    CAS  Google Scholar 

  • Lee SC, Park S (2016) Removal of furan and phenolic compounds from simulated biomass hydrolysates by batch adsorption and continuous fixed-bed column adsorption methods. Bioresour Technol 216:661–668. doi:10.1016/j.biortech.2016.06.007

    Article  CAS  Google Scholar 

  • Li H, Ye C, Liu K et al (2015) Analysis of particle size reduction on overall surface area and enzymatic hydrolysis yield of corn stover. Bioprocess Biosyst Eng 38:149–154. doi:10.1007/s00449-014-1253-y

    Article  CAS  Google Scholar 

  • Li M, Pu Y, Ragauskas AJ (2016) Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem 4:1–8. doi:10.3389/fchem.2016.00045

    Article  CAS  Google Scholar 

  • Lin R, Cheng J, Ding L et al (2015) Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Bioresour Technol 196:250–255. doi:10.1016/j.biortech.2015.07.097

    Article  CAS  Google Scholar 

  • Lynd LR, Liang X, Biddy MJ et al (2017) Cellulosic ethanol: status and innovation. Curr Opin Biotechnol 45:202–211. doi:10.1016/j.copbio.2017.03.008

    Article  CAS  Google Scholar 

  • Macías-Rodríguez R, Alcantar-González E, Íñiguez-Covarrubias G et al (2010) Caracterización física y química de sustratos agrícolas a partir de bagazo de agave tequilero. Interciencia 35:515–520

    Google Scholar 

  • Mesa L, González E, Ruiz E et al (2010) Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: application of 23 experimental design. Appl Energy 87:109–114. doi:10.1016/j.apenergy.2009.07.016

    Article  CAS  Google Scholar 

  • Mesa L, González E, Cara C et al (2011) The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J 168:1157–1162. doi:10.1016/j.cej.2011.02.003

    Article  CAS  Google Scholar 

  • Monlau F, Trably E, Barakat A et al (2013) Two-stage alkaline-enzymatic pretreatments to enhance biohydrogen production from sunflower stalks. Environ Sci Technol 47:12591–12599. doi:10.1021/es402863v

    Article  CAS  Google Scholar 

  • Monlau F, Sambusiti C, Barakat A et al (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32:934–951. doi:10.1016/j.biotechadv.2014.04.007

    Article  CAS  Google Scholar 

  • Montiel C, Hernández-Meléndez O, Vivaldo-Lima E et al (2016) Enhanced bioethanol production from blue agave bagasse in a combined extrusion-saccharification process. Bioenergy Res. doi:10.1007/s12155-016-9747-x

    Article  Google Scholar 

  • Moran-Salazar RG, Marino-Marmolejo EN, Rodriguez-Campos J et al (2015) Use of agave bagasse for production of an organic fertilizer by pretreatment with Bjerkandera adusta and vermicomposting with Eisenia fetida. Environ Technol 3330:1220–1231. doi:10.1080/09593330.2015.1108368

    Article  CAS  Google Scholar 

  • Müller-Langer F, Majer S, O’Keeffe S (2014) Benchmarking biofuels—a comparison of technical, economic and environmental indicators. Energy Sustain Soc 4:20. doi:10.1186/s13705-014-0020-x

    Article  Google Scholar 

  • Murillo-Alvarado PE, Ponce-Ortega JM, Castro-Montoya AJ et al (2014) Biofuels from residues of the tequila industry of Mexico. Elsevier, Amsterdam

    Book  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10. doi:10.1016/j.biortech.2003.10.005

    Article  CAS  Google Scholar 

  • Nakasu PYS, Ienczak LJ, Costa AC, Rabelo SC (2016) Acid post-hydrolysis of xylooligosaccharides from hydrothermal pretreatment for pentose ethanol production. Fuel 185:73–84. doi:10.1016/j.fuel.2016.07.069

    Article  CAS  Google Scholar 

  • Nieto-Delgado C, Rangel-Mendez JR (2011) Production of activated carbon from organic by-products from the alcoholic beverage industry: surface area and hardness optimization by using the response surface methodology. Ind Crops Prod 34:1528–1537. doi:10.1016/j.indcrop.2011.05.014

    Article  CAS  Google Scholar 

  • Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27. doi:10.1016/S0168-1656(00)00385-0

    Article  CAS  Google Scholar 

  • Nissilä ME, Lay CH, Puhakka JA (2014) Dark fermentative hydrogen production from lignocellulosic hydrolyzates—a review. Biomass Bioenerg 67:145–159. doi:10.1016/j.biombioe.2014.04.035

    Article  CAS  Google Scholar 

  • Nualsri C, Kongjan P, Reungsang A (2016a) Direct integration of CSTR-UASB reactors for two-stage hydrogen and methane production from sugarcane syrup. Int J Hydrogen Energy 41:17884–17895. doi:10.1016/j.ijhydene.2016.07.135

    Article  CAS  Google Scholar 

  • Nualsri C, Reungsang A, Plangklang P (2016b) Biochemical hydrogen and methane potential of sugarcane syrup using a two-stage anaerobic fermentation process. Ind Crops Prod 82:88–99. doi:10.1016/j.indcrop.2015.12.002

    Article  CAS  Google Scholar 

  • Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331. doi:10.1016/0141-0229(95)00157-3

    Article  CAS  Google Scholar 

  • Ouyang X, Tan Y, Qiu X (2014) Oxidative degradation of lignin for producing monophenolic compounds. J Fuel Chem Technol 42:677–682. doi:10.1016/S1872-5813(14)60030-X

    Article  CAS  Google Scholar 

  • Paredes-Ibarra FJ, Orozco-Hernández JR, Verdín-Sánchez H et al (2011) Effect of cellulase on the digestibility of sodium hydroxide treated Tequilana agave bagasse. J Appl Anim Res 39:33–35. doi:10.1080/09712119.2011.565557

    Article  CAS  Google Scholar 

  • Pedersen M, Meyer AS (2009) Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnol Prog 25:399–408. doi:10.1002/btpr.141

    Article  CAS  Google Scholar 

  • Perez-Pimienta JA, Lopez-Ortega MG, Varanasi P et al (2013) Comparison of the impact of ionic liquid pretreatment on recalcitrance of agave bagasse and switchgrass. Bioresour Technol 127:18–24. doi:10.1016/j.biortech.2012.09.124

    Article  CAS  Google Scholar 

  • Perez-Pimienta JA, Lopez-Ortega MG, Chavez-Carvayar JA et al (2015) Characterization of agave bagasse as a function of ionic liquid pretreatment. Biomass Bioenerg 75:180–188. doi:10.1016/j.biombioe.2015.02.026

    Article  CAS  Google Scholar 

  • Perez-Pimienta JA, Flores-Gómez CA, Ruiz HA et al (2016) Evaluation of agave bagasse recalcitrance using AFEX, autohydrolysis, and ionic liquid pretreatments. Bioresour Technol 211:216–223. doi:10.1016/j.biortech.2016.03.103

    Article  CAS  Google Scholar 

  • Pérez-Pimienta JA, Vargas-Tah A, López-Ortega KM et al (2017) Sequential enzymatic saccharification and fermentation of ionic liquid and organosolv pretreated agave bagasse for ethanol production. Bioresour Technol 225:191–198. doi:10.1016/j.biortech.2016.11.064

    Article  CAS  Google Scholar 

  • Quéméneur M, Hamelin J, Barakat A et al (2012) Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. Int J Hydrogen Energy 37:3150–3159. doi:10.1016/j.ijhydene.2011.11.033

    Article  CAS  Google Scholar 

  • Quintero M, Castro L, Ortiz C et al (2012) Enhancement of starting up anaerobic digestion of lignocellulosic substrate: fique’s bagasse as an example. Bioresour Technol 108:8–13. doi:10.1016/j.biortech.2011.12.052

    Article  CAS  Google Scholar 

  • Qureshi N, Dien BS, Nichols NN et al (2006) Genetically engineered Escherichia Coli for ethanol production from xylose. Food Bioprod Process 84:114–122. doi:10.1205/fbp.05038

    Article  CAS  Google Scholar 

  • Ramírez-Cortina CR, Alonso-Gutiérrez MS, Rigal L (2012) Valorización de residuos agroindustriales del tequila para alimentacion de rumiantes. Rev Chapingo Ser Ciencias For y del Ambient XVIII:449–457. doi:10.5154/r.rchscfa.2011.08.059

    Article  Google Scholar 

  • Ren N, Li J, Li B et al (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrogen Energy 31:2147–2157. doi:10.1016/j.ijhydene.2006.02.011

    Article  CAS  Google Scholar 

  • Ren N-Q, Zhao L, Chen C et al (2016) A review on bioconversion of lignocellulosic biomass to H2: key challenges and new insights. Bioresour Technol 215:92–99. doi:10.1016/j.biortech.2016.03.124

    Article  CAS  Google Scholar 

  • Rencoret J, Pereira A, del Río JC et al (2016) Laccase-mediator pretreatment of wheat straw degrades lignin and improves saccharification. Bioenergy Res 9:917–930. doi:10.1007/s12155-016-9745-z

    Article  CAS  Google Scholar 

  • Reungsang A, Sittijunda S, Sreela-or C (2016) Methane production from acidic effluent discharged after the hydrogen fermentation of sugarcane juice using batch fermentation and UASB reactor. Renew Energy 86:1224–1231. doi:10.1016/j.renene.2015.09.051

    Article  CAS  Google Scholar 

  • RFA (2017) Building partnerships growing MarkeTS 2016 ethanol industry outlook

  • Rios-González LJ, Morales-Martínez TK, Rodríguez-Flores MF et al (2017) Autohydrolysis pretreatment assessment in ethanol production from agave bagasse. Bioresour Technol. doi:10.1016/j.biortech.2017.03.039

    Article  Google Scholar 

  • Rocha GJM, Gonçalves AR, Oliveira BR et al (2012a) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crops Prod 35:274–279. doi:10.1016/j.indcrop.2011.07.010

    Article  CAS  Google Scholar 

  • Rocha GJM, Martín C, da Silva VFN et al (2012b) Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresour Technol 111:447–452. doi:10.1016/j.biortech.2012.02.005

    Article  CAS  Google Scholar 

  • Rocha GJM, Nascimento VM, da Silva VFN et al (2014) Contributing to the environmental sustainability of the second generation ethanol production: delignification of sugarcane bagasse with sodium hydroxide recycling. Ind Crops Prod 59:63–68. doi:10.1016/j.indcrop.2014.05.002

    Article  CAS  Google Scholar 

  • Rodríguez R, Jiménez J, del Real J et al (2013) Utilización de subproductos de la industria tequilera. Parte 11. Compostaje de bagazo de agave crudo y biosólidos provenientes de una planta de tratamiento de vinazas tequileras. Rev Int Contam Ambient 29:303–313

    Google Scholar 

  • Saha BC (2004) Lignocellulose biodegradation and applications in biotechnology. In: ACS symposium series. pp 2–34

  • Saini JK, Patel AK, Adsul M, Singhania RR (2016) Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Renew Energy 98:29–42. doi:10.1016/j.renene.2016.03.089

    Article  CAS  Google Scholar 

  • Sambusiti C, Monlau F, Antoniou N et al (2016) Simultaneous detoxification and bioethanol fermentation of furans-rich synthetic hydrolysate by digestate-based pyrochar. J Environ Manag 183:1026–1031. doi:10.1016/j.jenvman.2016.09.062

    Article  CAS  Google Scholar 

  • Sannigrahi P, Pu Y, Ragauskas A (2010) Cellulosic biorefineries-unleashing lignin opportunities. Curr Opin Environ Sustain 2:383–393. doi:10.1016/j.cosust.2010.09.004

    Article  Google Scholar 

  • Santos JRA, Lucena MS, Gusmão NB, Gouveia ER (2012) Optimization of ethanol production by Saccharomyces cerevisiae UFPEDA 1238 in simultaneous saccharification and fermentation of delignified sugarcane bagasse. Ind Crops Prod 36:584–588. doi:10.1016/j.indcrop.2011.10.002

    Article  CAS  Google Scholar 

  • Saravanakumar T, Park HS, Mo AY et al (2016) Detoxification of furanic and phenolic lignocellulose derived inhibitors of yeast using laccase immobilized on bacterial cellulosic nanofibers. J Mol Catal B Enzym 134:196–205. doi:10.1016/j.molcatb.2016.11.006

    Article  CAS  Google Scholar 

  • Sarma SJ, Pachapur V, Brar SK et al (2015) Hydrogen biorefinery: potential utilization of the liquid waste from fermentative hydrogen production. Renew Sustain Energy Rev 50:942–951. doi:10.1016/j.rser.2015.04.191

    Article  CAS  Google Scholar 

  • Saucedo-Luna J, Castro-Montoya AJ, Rico JL, Campos-Garcia J (2010) Optimization of acid hydrolysis of bagasse from Agave tequilana weber. Rev Mex Ing Química 9:91–97

    CAS  Google Scholar 

  • Saucedo-Luna J, Castro-Montoya AJ, Martinez-Pacheco MM et al (2011) Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. J Ind Microbiol Biotechnol 38:725–732. doi:10.1007/s10295-010-0853-z

    Article  CAS  Google Scholar 

  • Schmetz Q, Maniet G, Jacquet N et al (2016) Comprehension of an organosolv process for lignin extraction on Festuca arundinacea and monitoring of the cellulose degradation. Ind Crops Prod 94:308–317. doi:10.1016/j.indcrop.2016.09.003

    Article  CAS  Google Scholar 

  • Sekoai PT, Gueguim Kana EB (2014) Semi-pilot scale production of hydrogen from organic fraction of solid municipal waste and electricity generation from process effluents. Biomass Bioenerg 60:156–163. doi:10.1016/j.biombioe.2013.11.008

    Article  CAS  Google Scholar 

  • SENER (2016) Renewable energies outlook 2016–2030

  • Siqueira MR, Reginatto V (2015) Inhibition of fermentative H2 production by hydrolysis byproducts of lignocellulosic substrates. Renew Energy 80:109–116. doi:10.1016/j.renene.2015.01.070.

    Article  CAS  Google Scholar 

  • Stafford W, Lotter A, Brent A, Von G (2017) WIDER working paper 2017/87 biofuels technology a look forward.

  • Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crops Prod 27:202–207. doi:10.1016/j.indcrop.2007.07.008

    Article  CAS  Google Scholar 

  • Su Y, Du R, Guo H et al (2015) Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: characterization of its major components. Food Bioprod Process 94:322–330. doi:10.1016/j.fbp.2014.04.001

    Article  CAS  Google Scholar 

  • Sun RC, Sun XF, Fowler P, Tomkinson J (2002) Structural and physico-chemical characterization of lignins solubilized during alkaline peroxide treatment of barley straw. Eur Polym J 38:1399–1407. doi:10.1016/S0014-3057(01)00303-2

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651. doi:10.3390/ijms9091621

    Article  CAS  Google Scholar 

  • Valenzuela A (2011) A new agenda for blue agave landraces: food, energy and tequila. GCB Bioenergy 3:15–24. doi:10.1111/j.1757-1707.2010.01082.x

    Article  Google Scholar 

  • Vallejos ME, Chade M, Mereles EB et al (2016) Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Ind Crops Prod 91:161–169. doi:10.1016/j.indcrop.2016.07.007

    Article  CAS  Google Scholar 

  • Vandenbossche V, Brault J, Hernandez-Melendez O et al (2016) Suitability assessment of a continuous process combining thermo-mechano-chemical and bio-catalytic action in a single pilot-scale twin-screw extruder for six different biomass sources. Bioresour Technol 211:146–153. doi:10.1016/j.biortech.2016.03.072

    Article  CAS  Google Scholar 

  • Velazquez-Jimenez LH, Pavlick A, Rangel-Mendez JR (2013) Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Ind Crops Prod 43:200–206. doi:10.1016/j.indcrop.2012.06.049

    Article  CAS  Google Scholar 

  • Velázquez-Valadez U, Farías-Sánchez JC, Vargas-Santillán A, Castro-Montoya AJ (2016) Tequilana weber Agave bagasse enzymatic hydrolysis for the production of fermentable sugars: oxidative-alkaline pretreatment and kinetic modeling. Bioenergy Res 9:998–1004. doi:10.1007/s12155-016-9757-8

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Venkateswar Reddy M, Venkata Subhash G, Sarma PN (2010) Fermentative effluents from hydrogen producing bioreactor as substrate for poly(β-OH) butyrate production with simultaneous treatment: an integrated approach. Bioresour Technol 101:9382–9386. doi:10.1016/j.biortech.2010.06.109

    Article  CAS  Google Scholar 

  • Venkateswar Reddy M, Amulya K, Rohit MV et al (2014) Valorization of fatty acid waste for bioplastics production using Bacillus tequilensis: integration with dark-fermentative hydrogen production process. Int J Hydrogen Energy 39:7616–7626. doi:10.1016/j.ijhydene.2013.09.157

    Article  CAS  Google Scholar 

  • Wilkinson S, Smart KA, Cook DJ (2014) Optimisation of alkaline reagent based chemical pre-treatment of Brewers spent grains for bioethanol production. Ind Crops Prod 62:219–227. doi:10.1016/j.indcrop.2014.08.036

    Article  CAS  Google Scholar 

  • Xuebing Z, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioprod Biorefining 6:465–482. doi:10.1002/bbb

    Article  Google Scholar 

  • Yeh A-I, Huang Y-C, Chen SH (2010) Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydr Polym 79:192–199. doi:10.1016/j.carbpol.2009.07.049

    Article  CAS  Google Scholar 

  • Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827. doi:10.1007/s00253-009-1883-1

    Article  CAS  Google Scholar 

  • Zhou S, Xue Y, Sharma AM, Bai X (2016) Lignin valorization through thermochemical conversion: Comparison of hardwood, softwood and herbaceous lignin. ACS Sustain Chem Eng. doi:10.1021/acssuschemeng.6b01488

    Article  Google Scholar 

  • Zhu L, O’Dwyer JP, Chang VS et al (2008) Structural features affecting biomass enzymatic digestibility. Bioresour Technol 99:3817–3828. doi:10.1016/j.biortech.2007.07.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fondo de Sustentabilidad Energética SENER-CONACYT, Clúster Biocombustibles Gaseosos, Project 247006. Rodolfo Palomo-Briones, Irma López-Gutiérrez, Karen L. Galindo-Hernández, and Jack Andrés Rincón-Pérez acknowledge CONACYT for the graduate scholarship provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elías Razo-Flores.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palomo-Briones, R., López-Gutiérrez, I., Islas-Lugo, F. et al. Agave bagasse biorefinery: processing and perspectives. Clean Techn Environ Policy 20, 1423–1441 (2018). https://doi.org/10.1007/s10098-017-1421-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-017-1421-2

Keywords

Navigation