Skip to main content
Log in

Integration of microfiltration and nanofiltration to promote textile effluent reuse

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

This study investigates the application of a hybrid microfiltration–nanofiltration (MF–NF) process for textile wastewater reclamation. Indigo blue dye was efficiently retained by an MF membrane, allowing its recovery from the concentrated stream. NF technology was successfully applied to polish textile effluent. The NF membrane was evaluated under different transmembrane pressure (8–15 bars), crossflow velocities (0.21–0.84 cm s−1), pH (7–11), and feed temperature (20–40 °C). The best NF performance was provided at a pressure of 12 bar and a crossflow rate of 0.63 cm s−1. The NF performance (in terms of COD, conductivity, colour, and nitrogen removal) was not influenced by pH; however, higher feed pH values resulted in increased membrane fouling. The principal cause of flux decline was due to concentration polarization. Membrane chemical cleaning was sufficient to regain the initial permeability. The NF permeate met the quality requirements for all water demands within the textile industry, while the NF concentrate could be used to wash equipment, print work screens, print paste containers, and floors. The total capital cost (CapEx) of the MF–NF system was estimated at 58,362.50 US dollars and the total operational cost (OpEx) at 0.31 US dollars per cubic metre of effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Filtration area

ATR-FTIR:

Fourier transform coupled total attenuated reflectance system

CP:

Concentration polarization

COD:

Chemical oxygen demand

Cr:

Chrome

Cu:

Copper

D h :

Cell hydraulic diameter

D i :

Diffusion coefficient

EC:

Electrical conductivity

EDX:

Energy dispersive X-ray spectroscopy

F df :

Flux decline due to fouling

Fe:

Iron

H cc :

Hydraulic resistance after chemical cleaning

H f :

Hydraulic resistance of the fouling layer

H fr :

Reversible fouling layer

H fir :

Irreversible fouling layer

J sd :

Effluent flux

J w :

Water flux

MF:

Microfiltration

Mn:

Manganese

MWCO:

Molecular weight cut-off

NF:

Nanofiltration

Q :

Feed flow rate

Re :

Reynolds number

r int :

Logarithmic mean radius difference

R :

Rejection

R m :

Hydraulic resistance of the membrane

RR:

Recuperation Rate

SEC:

Specific energy consumption

Sc :

Schmidt number

Sh :

Sherwood number

TMP:

Transmembrane pressure

TS:

Total solids

TVS:

Total volatile solids

TDS:

Total dissolved solids

T fd :

Total flux decline

WP:

Water permeability

∆Π:

Transmembrane osmotic pressure difference

μ w :

Water viscosity

References

  • Amaral MCS, Neta LF, Lima MS, Barreto NC, Carvalho RB (2013) Evaluation of operational parameters from a microfiltration system for indigo blue dye recovery from textile dye effluent. Desalin Water Treat 52:257–266

    Article  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Banerjee P, De S (2010) Coupled concentration polarization and pore flow modeling of nanofiltration of an industrial textile effluent. Sep Purif Technol 73:355–362

    Article  CAS  Google Scholar 

  • Bi F, Zhao H, Zhang L, Ye Q, Chen H, Gao C (2014) Discussion on calculation of maximum water recovery in nanofiltration system. Desalination 332:142–146

    Article  CAS  Google Scholar 

  • Blanco J, Torrades F, Morón M, Brouta-Agnésa M, García-Montaño J (2014) Photo-Fenton and sequencing batch reactor coupled to photo-Fenton processes for textile wastewater reclamation: feasibility of reuse in dyeing processes. Chem Eng 240:469–475

    Article  CAS  Google Scholar 

  • Boussu K, Belpaire A, Volodin A, Van Haesendonck C, Van Der Meeren P, Vandecasteele C, Van Der Bruggen C (2007) Influence of membrane and colloid characteristics on fouling of nanofiltration membranes. J Membr Sci 289:220–230

    Article  CAS  Google Scholar 

  • Buscio V, Marín MJ, Crespi M, Gutiérrez-Bouzán C (2015) Reuse of textile wastewater after homogenization–decantation treatment coupled to PVDF ultrafiltration membranes. Chem Eng J 265:122

    Article  CAS  Google Scholar 

  • Chen V, Yanga Y, Zhoua M, Liua M, Yua S, Gaol G (2015) Comparative study on the treatment of raw and biological treated textile effluents through submerged nanofiltration. J Environ Manag 284:121–129

    Article  CAS  Google Scholar 

  • Chidambaram T, Oren Y, Noel M (2015) Fouling of nanofiltration membranes by dyes during brine recovery from textile dye bath wastewater. Chem Eng J 262:156–168

    Article  CAS  Google Scholar 

  • Costa AR, De Pinho MN (2006) Performance and cost estimation of nanofiltration for surface water treatment in drinking water production. Desalination 196:55–65

    Article  CAS  Google Scholar 

  • Dalwani M, Benes NE, Bargeman G, Stamatialis D, Wessling M (2011) Effect of pH on the performance of polyamide/polyacrylonitrile based thin film composite membranes. J Membr Sci 372:228–238

    Article  CAS  Google Scholar 

  • Dasgupta J, Sikder J, Chakraborty S, Curcio S, Drioli E (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. J Environ Manag 147:55–72

    Article  CAS  Google Scholar 

  • Ellouze E, Tahri N, Amar RB (2012) Enhancement of textile wastewater treatment process using Nanofiltration. Desalination 286:16–23

    Article  CAS  Google Scholar 

  • Evironmental Protection Agency (EPA) (2004) Guidelines for water reuse. Agency for International Development, Washington

    Google Scholar 

  • Friha I, Bradai M, Johnson D, Hilal N, Loukil S, Amor FB, Feki F, Han J, Isoda H, Sayadi S (2015) Treatment of textile wastewater by submerged membrane bioreactor: in vitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater. J Environ Manag 160:184–192

    Article  CAS  Google Scholar 

  • Geraldes V, Semiao V, Pinho MN (2002) Flow management in nanofiltration spiral wound modules with ladder-type spacers. J Membr Sci 203:87–102

    Article  CAS  Google Scholar 

  • Gorenflo A, Velazquez-Padron D, Frimmel FH (2002) Nanofiltration of a German groundwater of high hardness and NOM content: performance and costs. Desalination 151:253–265

    Article  Google Scholar 

  • Gozálvez-Zafrilla JM, Sanz-Escribano D, Lora-García J, Hidalgo MCL (2008) Nanofiltration of secondary effluent for wastewater reuse in the textile industry. Desalination 222:272–279

    Article  Google Scholar 

  • Hildebrand C, Kuglin VB, Brandao HL, Vilar VJP, Souza SMAGU, Souza AAU (2013) Insights into nanofiltration of textile wastewaters for water reuse. Clean Technol Environ Policy 16:591. doi:10.1007/s10098-013-0665-8

    Article  Google Scholar 

  • Juang Y, Nurhayati E, Huang C, Pan JR, Huan S (2013) A hybrid electrochemical advanced oxidation/microfiltration system using BDD/Ti anode for acid yellow 36 dye wastewater treatment. Sep Purif Technol 120:289–295

    Article  CAS  Google Scholar 

  • Koyuncu I, Topacik D (2003) Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye/salt mixtures. Sep Purif Technol 33:283–294

    Article  CAS  Google Scholar 

  • Lin J, Tang CY, Ye WY, Sun S, Hamdan SH, Volodin A, Haesendonck CV, Sotto A, Luis P, Bruggen BV (2015) Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment. J Membr Sci 493:690–702

    Article  CAS  Google Scholar 

  • Liu M, Lü Z, Chen Z, Yu S, Gao C (2011) Comparison of reverse osmosis and nanofiltration membranes in the treatment of biologically treated textile effluent for water reuse. Desalination 281:372–378

    Article  CAS  Google Scholar 

  • Manu B (2007) Physico-chemical treatment of indigo dye wate-water. Color Technol 123:197–202

    Article  CAS  Google Scholar 

  • Mondal M, De S (2016) Treatment of textile plant effluent by hollow fiber nanofiltration membrane and multi-component steady state modelling. Chem Eng J 285:304–3018

    Article  CAS  Google Scholar 

  • Mukherjee R, Mondal M, Sinha A, Sarkar S, De S (2016) Application of nanofiltration membrane for treatment of chloride rich steel plant effluent. J Environ Chem Eng 4(1):1–9

    Article  CAS  Google Scholar 

  • Oliveira IB, Andrade LH, Neta LF, Amaral MCS (2013) Textile wastewater treatment by microfiltration aiming at indigo blue dye recovery. In: Proceedings of the 7th IWA specialised membrane technology conference and exhibition for water and wastewater treatment and Reuse, Toronto

  • Paschoal FMM, Tremiliosi-Filho G (2005) Aplicação da tecnologia de eletrofloculação na recuperação do corante índigo blue a partir de efluentes industriais. Quím Nova 28:766–772

    Article  Google Scholar 

  • Ricci BC, Aguiar AO, Andrade LH, Pires WL, Miranda GA, Amaral MCS (2016) Gold acid mine drainage treatment by membrane separation processes: an evaluation of the main operational conditions. Sep Purif Technol 170:360–369

    Article  Google Scholar 

  • Sanroman MA, Pazos M, Ricart MT, Cameselle C (2005) Decolorization of textile indigo dye by DC electric current. Eng Geol 77:253–261

    Article  Google Scholar 

  • Sethi S, Wiesner MR (2000) Cost modeling and estimation of crossflow membrane filtration processes. Environ Eng Sci 17:61–79

    Article  CAS  Google Scholar 

  • Sharma RR, Chellam S (2008) Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries. J Colloid Interface Sci 328:353–366

    Article  CAS  Google Scholar 

  • Shaw CB, Carliell CM, Wheatley AD (2002) Anaerobic/aerobic treatment of colored textile effluents using sequencing batch reactors. Water Res 36:1993–2001

    Article  CAS  Google Scholar 

  • Shen J, Huang J, Ruan H, Wang J, Van Der Bruggen B (2014) Techno-economic analysis of resource recovery of glyphosate liquor by membrane technology. Desalination 342:118–125

    Article  CAS  Google Scholar 

  • Tang C, Chen V (2002) Nanofiltration of textile wastewater for water reuse. Desalination 143:11–20

    Article  CAS  Google Scholar 

  • Valh JV, Marechal AML, Vajnhandl S, Jeric T, Simon E (2011) Treatise on water science: volume 4: water-quality engineering. Elsevier, Amsterdam

    Google Scholar 

  • Vedrenne M, Vasquez-Medrano R, Prato-Garcia D, Frontana-Uribec BA, Hernandez-Esparza M, Andrés JMA (2012) Ferrous oxalate mediated photo-fenton system: toward an increased biodegradability of indigo dyed wastewaters. J Hazard Mater 243:292–301

    Article  CAS  Google Scholar 

  • Zhu A, Christofides PD, Cohen Y (2009) Energy consumption optimization of reverse osmosis membrane water desalinization subject to feed fluctuation. Ind Eng Chem Res 48:9581–9589

    Article  CAS  Google Scholar 

  • Zulaikha S, Lau WJ, Ismail AF, Jaafar J (2014) Treatment of restaurant wastewater using ultrafiltration and nanofiltration membranes. J Water Proc Eng 2:58–62

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like thank Tear Textil Ind. e Com. Ltda. for their support.

Funding

This work was supported by the Coordination of Superior Level Staff Improvement (CAPES); associated National Council for Scientific and Technological Development (CNPq); Foundation for Research Support of the State of Minas Gerais (FAPEMIG); Federal Center of Technological Education of Minas Gerais (CEFET-MG) Federal University of Minas Gerais, Brazil (UFMG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Cristina Santos Amaral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couto, C.F., Moravia, W.G. & Amaral, M.C.S. Integration of microfiltration and nanofiltration to promote textile effluent reuse. Clean Techn Environ Policy 19, 2057–2073 (2017). https://doi.org/10.1007/s10098-017-1388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-017-1388-z

Keywords

Navigation