Skip to main content

Advertisement

Log in

Docosahexaenoic acid production from crude glycerol by Schizochytrium limacinum SR21

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

In our search for a substitute energy source, microalgal biodiesel has presented itself as a potential candidate. However, the development of biodiesel results in the overproduction of crude glycerol, which can cause undesirable environmental issues. The environmental harm can be minimized by converting crude glycerol into value-added products. One solution involves using a microalga Schizochytrium limacinum SR21 to convert crude glycerol into docosahexaenoic acid (DHA). DHA is an essential fatty acid, necessary for developing brain functions in infants and maintaining healthy brain activity in adults. In our study, the highest DHA productivity of 233.73 mg/g biomass was obtained using 3 % crude glycerol in Medium 2 at 20 °C under mixo/heterotrophic cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abad S, Turon X (2015) Biotechnological production of docosahexaenoic acid using aurantiochytrium limacinum: carbon sources comparison and growth characterization. Mar Drugs 13:7275–7284

    Article  CAS  Google Scholar 

  • Athalye SK, Garcia RA, Wen Z (2009) Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. J Agric Food Chem 57:2739–2744

    Article  CAS  Google Scholar 

  • Batista AP et al (2015) Combining urban wastewater treatment with biohydrogen production–an integrated microalgae-based approach. Bioresour Technol 184:230–235

    Article  CAS  Google Scholar 

  • Bizzo WA, Lenço PC, Carvalho DJ, Veiga JPS (2014) The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production. Renew Sustain Energy Rev 29:589–603

    Article  Google Scholar 

  • Chacón-Lee T, González-Mariño G (2010) Microalgae for “healthy” foods—possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety 9:655–675

    Article  Google Scholar 

  • Chen Y-H, Walker TH (2011) Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnol Lett 33:1973–1983

    Article  CAS  Google Scholar 

  • Christien E, Matthias P, Maria B, Lolke S (2014) Microalgae-based products for the food and feed sector: an outlook for Europe. European Commission, Joint Research Centre, Institute for Prospective Technological Studies, Luxembourg

    Google Scholar 

  • Ethier S, Woisard K, Vaughan D, Wen Z (2011) Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol 102:88–93

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues Journal of Biological Chemistry 226:497–509

    CAS  Google Scholar 

  • Guedes A, Amaro HM, Malcata FX (2011) Microalgae as sources of high added-value compounds—a brief review of recent work. Biotechnol Prog 27:597–613

    Article  CAS  Google Scholar 

  • Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 40:211–225. doi:10.1006/phrs.1999.0495

    Article  CAS  Google Scholar 

  • Hu S, Wan C, Li Y (2012) Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Bioresour Technol 103:227–233

    Article  CAS  Google Scholar 

  • Ikeda Y, Park EY, Okuda N (2006) Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger. Bioresour Technol 97:1030–1035

    Article  CAS  Google Scholar 

  • Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26:338–348

    Article  CAS  Google Scholar 

  • Klassen V, Blifernez-Klassen O, Hoekzema Y, Mussgnug JH, Kruse O (2015) A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass Journal of Biotechnology 215:44–51

    CAS  Google Scholar 

  • Lee Y-C et al (2013) Lipid extractions from docosahexaenoic acid (DHA)-rich and oleaginous Chlorella sp. biomasses by organic-nanoclays. Bioresour Technol 137:74–81

    Article  CAS  Google Scholar 

  • Mata TM, Santosa J, Mendesa AM, Caetanoa NS, Martinsc AA (2014) Sustainability Evaluation of Biodiesel Produced from Microalgae Chlamydomonas sp Grown in Brewery Wastewater Chemical. Engineering Transactions 37:823–828

    Google Scholar 

  • Okuda T, Ando A, Sakuradani E, Ogawa J (2013) Isolation and characterization of a docosahexaenoic acid-phospholipids producing microorganism Crypthecodinium sp. D31. J Am Oil Chem Soc 90:1837–1844

    Article  CAS  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  Google Scholar 

  • Pyle DJ, Garcia RA, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933–3939

    Article  CAS  Google Scholar 

  • Raheem A, Sivasangar S (2015) Wan Azlina WAKG, Taufiq Yap YH, Danquah MK, Harun R. Thermogravimetric study of Chlorella vulgaris for syngas production Algal Research 12:52–59. doi:10.1016/j.algal.2015.08.003

    Google Scholar 

  • Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2011) Effect of Tween 80 on the growth, lipid accumulation and fatty acid composition of Thraustochytrium aureum ATCC 34304. J Biosci Bioeng 111:420–424

    Article  CAS  Google Scholar 

  • Ubando AT, Cuello JL, El-Halwagi MM, Culaba AB, Promentilla MAB, Tan RR (2015) Application of stochastic analytic hierarchy process for evaluating algal cultivation systems for sustainable biofuel production Clean Technologies and Environmental Policy:1-14 doi:10.1007/s10098-015-1073-z

  • UTEX (2014) The culture collection of algae artificial seawater medium. http://web.biosci.utexas.edu/utex/mediaDetail.aspx?mediaID=23. Accessed 29.09.2014

  • Wan M et al (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 91:835–844

    Article  CAS  Google Scholar 

  • Xue J, Grift TE, Hansen AC (2011) Effect of biodiesel on engine performances and emissions. Renew Sustain Energy Rev 15:1098–1116

    Article  CAS  Google Scholar 

  • Zhu L, Zhang X, Ji L, Song X, Kuang C (2007) Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochem 42:210–214

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported financially by Fundamental Research Grant Scheme (Malaysia), Ministry of Science, Technology and Innovation (MOSTI-02-02-12-SF0256), and National Science Council (Taiwan, NSC102-2221-E-155-057 and NSC101-2632-E-155-001-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau Loke Show.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lung, YT., Tan, C.H., Show, P.L. et al. Docosahexaenoic acid production from crude glycerol by Schizochytrium limacinum SR21. Clean Techn Environ Policy 18, 2209–2216 (2016). https://doi.org/10.1007/s10098-016-1126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1126-y

Keywords

Navigation